Citation: | WANG Rui, WANG Yongmei, CAI Mingjun, KE Xuejia, WU Yue, CHONG Jun, CAO Rongyue. Pharmacological effects of anti-melanoma DC vaccine sensitized by fusion proteins of G3G6 and HST1[J]. Journal of China Pharmaceutical University, 2019, 50(2): 238-245. DOI: 10.11665/j.issn.1000-5048.20190216 |
[1] |
Yang LG.Immunotherapy for malignant melanoma:current status and progress [J].Chin Cancer(中国肿瘤),2018,27(1):54-60.
|
[2] |
Wang HY,Lu J.Progress in clinical research of tumor immunotherapy[J].The J Pract Med(实用医学杂志),2018,34(6):917-919.
|
[3] |
Diao AP,Zhao Q.Research progress in immune cell-mediated cancer therapy[J].J Tianjin Univ Sci Technol(天津科技大学学报),2018,33(1):1-8.
|
[4] |
Chen JH,Zhao DQ.Research progress in immune escape mechanism [J].J Hyg Res(卫生研究),2018,47(2):330-334.
|
[5] |
Chen DW,Wang Y,Wang H,et al.CD8+ T activation attenuates CD4+ T proliferation through dendritic cells modification[J].Cell Immunol,2015,296(2):138-148.
|
[6] |
Berner VK,duPre SA,Redelman D,et al.Microparticulate β-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro[J].Cell Immunol,2015,298(1/2):104-114.
|
[7] |
Liu SJ,Xie QY,Gong FS,et al.Efficacy of dendritic and cytokine-induced killer cells on postoperative patients with malignant melanoma[J].J Fujian Med Univ(福建医科大学学报),2017,51(4):17-22.
|
[8] |
Zheng YM,He CC,Wang SZ,et al.Effect of co-culturing dendritic cells with melanoma cells on formation of melanoma in mice[J].Shandong Med J(山东医药),2017,57(5):1-3.
|
[9] |
Jia PY,Wang YX.Gonadotropin releasing hormone and its receptor associated with tumor therapy:research advances[J].J Int Pharm Res(国际药学研究杂志),2009,36(3):179-183.
|
[10] |
Zhang Y,Liu XX,Wang R,et al.Comparison of fusion protein and dc vaccine in inhibition of mouse b16f10 melanoma tumor[J].Biomed Pharmacother,2018,97:784-792.
|
[11] |
Lu Y,Zhang HY,Hou J,et al.Vaccination with a potent DNA vaccine targeting B-cell epitopes of hGRP induces prophylactic and therapeutic antitumor activity in vivo[J].Gene Ther,2010,17(4):459-468.
|
[12] |
Gulley JL,Madan RA,Tsang KY,et al.Immune impact induced by prostvac(psa-tricom),a therapeutic vaccine for prostate cancer[J].Cancer Immunol Res,2014,2(2):133-141.
|
[13] |
Gomes IM,Maia CJ,Santos CR.STEAP proteins:from structure to applications in cancer therapy[J].Mol Cancer Res,2012,10(5):573-587.
|
[14] |
Maia CJ,Socorro S,Schmitt F,et al.STEAP1 is over-expressed in breast cancer and down-regulated by 17beta-estradiol in MCF-7 cells and in the rat mammary gland[J].Endocrine,2008,34(1/2/3):108-116.
|
[15] |
Cheung IY,Feng Y,Danis K,et al.Novel markers of subclinical disease for Ewing family tumors from gene expression profiling[J].Clin Cancer Res,2007,13(23):6978-6983.
|
[16] |
Moreaux J,Kassambara A,Hose D,et al.STEAP1 is overexpressed in cancers:a promising therapeutic target[J].Biochem Biophys Res Commun,2012,429(3/4):148-155.
|
[17] |
Kobayashi H,Nagato T,Sato K,et al.Recognition of prostate and melanoma tumor cells by six-transmembrane epithelial antigen of prostate-specific helper T lymphocytes in a human leukocyte antigen class II-restricted manner[J].Cancer Res,2007,67(11):5498-5504.
|
[18] |
Garcia-Hernandez Mde L,Gray A,Hubby B,et al.In vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate:a candidate antigen for treating prostate cancer[J].Cancer Res,2007,67(3):1344-1351.
|
[19] |
Wowk PF,Franco LH,Fonseca DMD,et al.Mycobacterial Hsp65 antigen upregulates the cellular immune response of healthy individuals compared with tuberculosis patients[J].Hum Vacc Immunother,2017,13:1-11.
|
[20] |
Wang XJ,Gu K,Xu JS,et al.Immunization with a recombinant GnRH vaccine fused to heat shock protein 65 inhibits mammary tumor growth in vivo[J].Cancer Immunol Immunother,2010,59(12):1859-1866.
|
[21] |
Skalova K,Mollova K,Michalek J.Human myeloid dendritic cells for cancer therapy:does maturation matter[J]?Vaccine,2010,28(32):5153-5160.
|
[22] |
Zhang CY,Liu JY,Zhang ZM,et al.Study on the optimal efficient ratio on target cells and the antitumor activity of effect cells stimulated by dendritic cells in vitro[J].J Guangxi Med Univ(广西医科大学学报),2007,24(4):493-496.
|
[23] |
Zhang Y,Liu XX,Wang R,et al.Comparison of fusion protein and DC vaccine in inhibition of mouse B16F10 melanoma tumor[J].Biomed Pharmacother,2018,97:784-792.
|
[24] |
Liu SJ,Wei XF,Liu SF,et al.In vitro anti-tumor effect of mGM-CSF-GnRH3 and mGM-CSF-GRP6 recombinant fusion protein and their bioinformatics prediction[J].Chin J Cancer Biother(中国肿瘤生物治疗杂志),2018,25(6):582-589.
|
[25] |
Jing LL,Miao ZT,Li MM,et al.Anti-tumor effect and its mechanism of co-administration of fusion proteins hVEGF121/βhCG and mGM-CSF/βhCG[J].J China Pharm Univ(中国药科大学学报),2017,48(1):102-109.
|
[26] |
Cao RY,Yu MX,Zhang XL,et al.Construction,expression,purification of VEGF II/GRP fusion protein and the effects on RM-1 prostate tumor in mice[J].J Chin Biotechnol(中国生物工程杂志),2016,36(8):9-15.
|
[27] |
Li MM,Jing LL,Yuan YT,et al.Inhibitory effect of hVEGF_(121)/βHCG fusion protein combined with chemical drugs on mouse B16F10 melanoma [J].Chin J Pharm Biotechnol(药物生物技术),2016,23(4):299-303.
|
[28] |
Jing LL,Zhang XL,Li MM,et al.Effect of GnRH/M2 and mGM-CSF/βhCG fusion protein-sensitized dendritic cell vaccine against mouse prostate cancer [J].Cancer Res Prev Treat(肿瘤防治研究),2016,43(10):842-847.
|
[29] |
Cao RY,Ma YF,Yuan YT,et al.Inhibitory effect of DC vaccine sensitized by GnRH/M2 fusion protein on melanoma B16F10 cell xenografts[J].Chin J Cancer Biother(中国肿瘤生物治疗杂志),2016,23(4):468-475.
|
[30] |
Cao XT.New advances in basic and clinical research of dendritic cells[J].Chin J Immunol(中国免疫学杂志),1998,14(3):167-168.
|
[31] |
Zhong GC.New advances in enhancing antigen presentation by dendritic cells[J].Chin J Cell Mol Immunol(细胞与分子免疫学杂志),2004,20(2):253-256.
|
[32] |
Henrickson SE,Mempel TR,Mazo IB,et al.OR.30.T Cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation[J].Nat Immunol,2008,9(3):282-291.
|
[1] | XING Yuanyue, REN Siqi, LIU Qiwei, YANG Jinni, DONG Haijuan, SONG Rui, ZHANG Zunjian. Intestinal absorption mechanism of saikosaponin d in vitro and in vivo[J]. Journal of China Pharmaceutical University, 2022, 53(4): 473-480. DOI: 10.11665/j.issn.1000-5048.20220410 |
[2] | CHEN Yun, ZENG Mei, XU Jingxin, HU Juan, ZHANG Jingqing. In situ intestinal absorption and pharmacokinetic study of metformin-resveratrol compound water-in-oil nanoemulsion[J]. Journal of China Pharmaceutical University, 2021, 52(3): 325-331. DOI: 10.11665/j.issn.1000-5048.20210309 |
[3] | YE Qing, HUO Mei-rong, ZHOU Jian-ping. Pharmacokinetics and in situ absorption in rat intestine of paclitaxel-loaded amphiphilic chitosan micelle[J]. Journal of China Pharmaceutical University, 2012, 43(5): 401-405. |
[4] | LIN Xu-sheng, JIANG Hai-song, Jian-ping. In situ intestinal absorption kinetics of valsartan in rats[J]. Journal of China Pharmaceutical University, 2012, 43(2): 130-136. |
[5] | ZHAO Zhong-xiang, LI Mei-fen, LIN Chao-zhan, XIONG Tian-qin, ZHU Chen-chen. Metabolic transformation of ilexsaponin A1 by intestinal flora[J]. Journal of China Pharmaceutical University, 2011, 42(4): 329-332. |
[6] | Role of intestinal cytochrome P450s in drug metabolism.[J]. Journal of China Pharmaceutical University, 2010, 41(2): 186-192. |
[7] | GONG Zhen-hua, ZHENG Zeng-juan, GAO Yuan, ZHANG Yi-hua, ZHOU Jian-ping, ZHANG Jian-jun. Enhancement of in situ intestinal absorption of an insoluble NO-donating drug ZLR-8 in rats by spray-dried emulsion[J]. Journal of China Pharmaceutical University, 2009, 40(4): 316-320. |
[8] | Absorption of Breviscapine in Small Intestine of Rat[J]. Journal of China Pharmaceutical University, 2003, (1): 67-71. |
[9] | Absorption of Phenol Red from Rat Intestine[J]. Journal of China Pharmaceutical University, 1996, (6): 37-41. |
[10] | The Absorption of Ramipril in Rat Intestine in Ussing Chambers[J]. Journal of China Pharmaceutical University, 1993, (6): 338-344. |
1. |
戴建英. 在体单向肠灌流法研究知母提取物肠吸收特性. 湖北医药学院学报. 2024(05): 518-523 .
![]() | |
2. |
黄秋妹,石茗,王珍,倪明龙,阙慧卿. 吴茱萸碱制剂的研究进展. 广东化工. 2023(10): 66-68+79 .
![]() | |
3. |
黄秋妹,阙慧卿,李唯,钱丽萍,刘经亮. 吴茱萸碱脂质体的制备工艺研究. 医学信息. 2023(19): 19-22 .
![]() | |
4. |
张佩琛,方栋,郝海军. 吴茱萸碱胃漂浮片制备及其对家兔胃黏膜损伤的保护作用. 中成药. 2023(11): 3527-3533 .
![]() | |
5. |
董丹丹,焦红军,郝海军,范明松. 吴茱萸碱纳米结构脂质载体处方优化和SD大鼠体内口服药动学研究. 中草药. 2022(01): 60-70 .
![]() | |
6. |
宋朔尧,杨贵前,陶玲,沈祥春,张环,李和蓉,王守莉,石惠云,刘文. 吴茱萸碱磷脂复合物自乳化药物递送系统的制备、表征及胃黏膜渗透性研究. 中国药房. 2022(09): 1056-1061 .
![]() | |
7. |
赵梦,刘卓雅,于嘉敏,王芮,范铭婕,乔宏志. 生姜细胞外囊泡样纳米粒载吴茱萸碱的处方工艺及体外释药研究. 南京中医药大学学报. 2022(06): 527-533 .
![]() | |
8. |
决利利,梁婧,李晓婷,王柯静,周珊珊,刘艳菊. 松果菊苷固体脂质纳米粒的制备及其在体肠吸收特性、体内药动学研究. 中成药. 2022(08): 2429-2434 .
![]() | |
9. |
陈云,曾梅,徐靖鑫,胡娟,张景勍. 二甲双胍-白藜芦醇复合物油包水型纳米乳在体肠吸收及其药代动力学研究. 中国药科大学学报. 2021(03): 325-331 .
![]() |