• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHEN Yun, ZENG Mei, XU Jingxin, HU Juan, ZHANG Jingqing. In situ intestinal absorption and pharmacokinetic study of metformin-resveratrol compound water-in-oil nanoemulsion[J]. Journal of China Pharmaceutical University, 2021, 52(3): 325-331. DOI: 10.11665/j.issn.1000-5048.20210309
Citation: CHEN Yun, ZENG Mei, XU Jingxin, HU Juan, ZHANG Jingqing. In situ intestinal absorption and pharmacokinetic study of metformin-resveratrol compound water-in-oil nanoemulsion[J]. Journal of China Pharmaceutical University, 2021, 52(3): 325-331. DOI: 10.11665/j.issn.1000-5048.20210309

In situ intestinal absorption and pharmacokinetic study of metformin-resveratrol compound water-in-oil nanoemulsion

Funds: This study was supported by Chongqing Science and Technology Innovation Project for Social Undertakings and Livelihood Security (No.cstc2017shmsA130028)
More Information
  • Received Date: January 27, 2021
  • Revised Date: May 10, 2021
  • To investigate the in situ intestinal absorption characteristics and pharmacokinetic behavior of metformin-resveratrol compound water-in-oil nanoemulsion (MRCE) in rats, the in situ intestinal perfusion model was constructed in rats to study the intestinal absorption characteristics of MRCE in different intestinal segments. Male Sprague-Dawley rats were randomly divided into two groups. After intragastric administration of metformin and MRCE, blood was taken at a preset time point. The content of metformin in intestinal perfusion samples and blood samples at various time points was determined by HPLC. Plasma concentration-time profiles of free metformin and MRCE were calculated, and the main pharmacokinetic data were processed and analyzed by DAS 2.1.1 software. The absorption rate constant (Ka), the effective permeability (Peff) and the percentage of absorption (PA) of MRCE in each intestinal segment were significantly higher than those of metformin (P < 0.05). The area under the drug-time curve (AUC0-72 h), the half-life (t1/2) and mean residence time (MRT0-72 h) of MRCE were 1.68, 11.25 and 6.97 times of metformin, respectively (P < 0.01).The relative bioavailability of MRCE was 167.6%. The 90% confidence interval of AUC0-72 h was 156.9%-187.4%, which was not within the standard interval of bioequivalence. The intestinal absorption of MRCE was significantly better than that of free metformin; MRCE improved the oral bioavailability of metformin and was not bioequivalent to metformin.
  • [1]
    . Lancet,2017,389(10085):2239-2251.
    [2]
    Zheng Y,Ley SH,Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol,2018,14(2):88-98.
    [3]
    Qaseem A,Barry MJ,Humphrey LL,et al. Oral pharmacologic treatment of type 2 diabetes mellitus:a clinical practice guideline update from the American college of physicians[J]. Ann Intern Med,2017,166(4):279-290.
    [4]
    Chinese Diabetes Society. Guidelines for the prevention and treatment of type 2 diabetes in China (2017 edition)[J]. Chin J Diabetes(中华糖尿病杂志),2018,10(1):4-67.
    [5]
    Huminiecki L,Horbańczuk J. The functional genomic studies of resveratrol in respect to its anti-cancer effects[J]. Biotechnol Adv,2018,36(6):1699-1708.
    [6]
    Filardo S,di Pietro M,Mastromarino P,et al. Therapeutic potential of resveratrol against emerging respiratory viral infections[J]. Pharmacol Ther,2020,214:107613.
    [7]
    Jeyaraman MM,Al-Yousif NSH,Singh MA,et al. Resveratrol for adults with type 2 diabetes mellitus[J]. Cochrane Database Syst Rev,2020,1:CD011919.
    [8]
    Wong RH,Raederstorff D,Howe PR. Acute resveratrol consumption improves neurovascular coupling capacity in adults with type 2 diabetes mellitus[J]. Nutrients,2016,8(7):E425.
    [9]
    Imamura H,Yamaguchi T,Nagayama D,et al. Resveratrol ameliorates arterial stiffness assessed by cardio-ankle vascular index in patients with type 2 diabetes mellitus[J]. Int Heart J,2017,58(4):577-583.
    [10]
    Graham GG,Punt J,Arora M,et al. Clinical pharmacokinetics of metformin[J]. Clin Pharmacokinet,2011,50(2):81-98.Scheen AJ. Clinical pharmacokinetics of metformin[J]. Clin Pharmacokinet,1996,30(5):359-371.
    [11]
    Cetin M,Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride[J]. Drug Deliv,2016,23(8):2796-2805.
    [12]
    Khan J,Alexander A,Ajazuddin,et al. Recent advances and future prospects of Phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives[J]. J Control Release,2013,168(1):50-60.
    [13]
    Saokham P,Muankaew C,Jansook P,et al. Solubility of cyclodextrins and drug/cyclodextrin complexes[J]. Molecules,2018,23(5):E1161.
    [14]
    Wang H,Luo JC,Zhang YH,et al. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids[J]. Int J Pharm,2020,582:119301.
    [15]
    Yang J,Liu HM,Chen Y,et al. Pharmacokinetics and in situ intestinal absorption of evodiamine lipidic nanoparticle[J]. J China Pharm Univ(中国药科大学学报),2020,51(6): 696-701.
    [16]
    Callender SP,Mathews JA,Kobernyk K,et al. Microemulsion utility in pharmaceuticals:implications for multi-drug delivery[J]. Int J Pharm,2017,526(1/2):425-442.
    [17]
    Zhao J,Li Y,Li KL,et al. In vitro release and in vivo gastrointestinal absorption of curcumin ethosomes[J]. J Chongqing Med Univ(重庆医科大学学报),2019,44(3):275-281.
    [18]
    Zhao J,Li Y,Shi MX,et al. Pharmacokinetics of curcumin ethosomes in rats in vivo[J]. J Sichuan Univ Med Sci Ed(四川大学学报 医学版),2017,48(2):290-294.
    [19]
    Manconi M,Nácher A,Merino V,et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation[J]. AAPS PharmSciTech,2013,14(2):485-496.
    [20]
    Li Y,Song JQ,Tian N,et al. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution[J]. Int J Pharm,2014,473(1/2):316-325.
    [21]
    Pati?o-Herrera R,Louvier-Hernández JF,Escamilla-Silva EM,et al. Prolonged release of metformin by SiO2 nanoparticles pellets for type II diabetes control[J]. Eur J Pharm Sci,2019,131:1-8.
    [22]
    Singh Y,Meher JG,Raval K,et al. Nanoemulsion:Concepts,development and applications in drug delivery[J]. J Control Release,2017,252:28-49.
  • Related Articles

    [1]CAI Xu, WU Xiaoqian, HAN Lingfei, FENG Feng, QU Wei, LIU Wenyuan. Research progress on natural products regulating osteogenic differentiation[J]. Journal of China Pharmaceutical University, 2025, 56(1): 10-21. DOI: 10.11665/j.issn.1000-5048.2024101003
    [2]LU Ningshu, JI Tao, LU Yinglan, XU Xiyuan, GU Xiaochen, DING Yang. Drug delivery strategies and clinical research progress for encephalopathy[J]. Journal of China Pharmaceutical University, 2024, 55(5): 577-589. DOI: 10.11665/j.issn.1000-5048.2024063001
    [3]YAO Chunlu, ZHANG Weijie, ZHANG Yunlong, DENG Zhaoxia, WANG Mengling, ZHANG Zuoling, WANG Chen, SONG Qinxin, ZOU Bingjie. Progress of single-cell protein imaging methods[J]. Journal of China Pharmaceutical University, 2024, 55(2): 147-157. DOI: 10.11665/j.issn.1000-5048.2024010205
    [4]WANG Chen, ZHANG Zhengping, LI Yinchun. Development strategy and clinical research progress of universal chimeric antigen receptor T-cell drugs[J]. Journal of China Pharmaceutical University, 2023, 54(2): 141-149. DOI: 10.11665/j.issn.1000-5048.20211125001
    [5]LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603
    [6]YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503
    [7]WANG Chen, XU Jun, LIU Yanhua, WANG Zengtao, HU Yue, TIAN Taiping, YI Mengjuan. Research progress on functionalized graphene oxide as drug carriers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 117-124. DOI: 10.11665/j.issn.1000-5048.20170118
    [8]ZHANG Danfeng, JIAO Yu, LIU Yong, ZHANG Yanmin, ZHANG Zhimin, LU Tao. Progress of small molecule anti-tumor covalent drugs[J]. Journal of China Pharmaceutical University, 2017, 48(1): 1-7. DOI: 10.11665/j.issn.1000-5048.20170101
    [9]ZHANG Jinghui, WANG Yajing, HU Rong. Roles of Moesin in tumor progression[J]. Journal of China Pharmaceutical University, 2015, 46(3): 371-375. DOI: 10.11665/j.issn.1000-5048.20150319
    [10]Advances and Prospects of Drug Discovery and Development Zhang Yihua, Peng Sixun, Hua Weiyi[J]. Journal of China Pharmaceutical University, 1999, (2): 75-80.
  • Cited by

    Periodical cited type(10)

    1. 严欣,胡蝶,贾瑞瑞,华雅洁,岳远征,王良桂,杨秀莲. 海州常山组培再生体系的建立. 分子植物育种. 2022(04): 1297-1303 .
    2. 郝丽亚,李冰洁,王中林,郑新华. 扯根菜化学成分及其保肝活性. 中成药. 2022(09): 2848-2854 .
    3. 张宇,岑银芝,陈亮,李勇军,孙建博,李林珍. 海州常山茎的化学成分研究(Ⅱ). 中药材. 2022(04): 857-861 .
    4. 王啸洋,卫柯,陆云阳,佟菲,张艳华,汤海峰. 美花铁线莲茎乙醇提取物正丁醇萃取部位化学成分的提取和鉴定. 环球中医药. 2022(11): 1784-1790 .
    5. 李林珍,张宇,陈亮,岑银芝,涂杨丽,杨小生,李勇军. 海州常山茎正丁醇部位的化学成分及体外抗肿瘤活性研究. 中国药房. 2022(21): 2578-2583+2589 .
    6. 刘晓聪,林冬梅,刘敏,张敏,李强,王健,徐露琳,高原,杨健. 番石榴的化学成分及其抗肿瘤与抗真菌活性. 中国中药杂志. 2021(15): 3877-3885 .
    7. 陈林玉,宋乐园,王云雨,卢梦如,顿彩云,杨青华,毕跃峰. 红小米化学成分与营养成分分析. 食品科学. 2021(18): 218-224 .
    8. 张吕丽,吴云飞,李祖强,罗蕾. 柄果海桐化学成分研究(Ⅲ). 云南师范大学学报(自然科学版). 2020(02): 55-58 .
    9. 吴威,宋芷琪,田琨宇,张会永. 豨桐丸的本草考证及组方药物化学成分和药理作用研究进展. 中草药. 2020(17): 4586-4597 .
    10. 刘璐,张宇,魏茜,李勇军,杨小生,李林珍. 臭梧桐子化学成分研究. 中药材. 2020(07): 1622-1625 .

    Other cited types(8)

Catalog

    Article views (177) PDF downloads (709) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return