• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603
Citation: LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603

Research progress of radioprobes targeting fibroblast activating protein

Funds: This study was supported by the Key Project of Connotation Construction of Nanjing Medical University;China Postdoctoral Science Foundation (No.2022M711419);and the Science and Technology Development Foundation of Nanjing Medical University (No.NMUB20210013)
More Information
  • Received Date: October 24, 2022
  • Revised Date: November 11, 2022
  • Fibroblast activating protein (FAP) is an important biomarker of cancer associated fibroblasts and activated fibroblasts, which is highly expressed in activated fibroblasts of many tumor and fibrotic tissues, but not in normal tissues and non malignant lesions. Therefore, FAP has become an excellent target for diagnosis and treatment of tumors and other diseases. PET imaging and internal radiotherapy based on FAP inhibitor (FAPI) have been used in the diagnosis and treatment of many diseases, such as cancer and fibrosis. We first introduce the mechanism of disease occurrence and progression mediated by FAP and its clinical significance as a therapeutic target.Then,we systematically summarize the FAP probes labeled with 125I, 68Ga, 64Cu and other radionuclides, including their structural evolution, imaging, biodistribution and pharmacokinetic properties.After that, the reported strategies to improve the pharmacokinetic properties and target affinity of probes are summarized, including the use of squaramide linkers,modification with albumin binding agent,the development of dual-targeting probes.Finally, some suggestions for the future development of novel radioactive probes targeting FAP and the clinical application of classical probes are proposed.
  • [1]
    . Cancers (Basel),2021,13(19):4946.
    [2]
    Yuan SJ,Liu YJ,Zhang N. Recent advances on cancer-assosiated fibroblasts treatment strategies and delivery systems[J]. Acta Pharm Sin(药学学报),2022,57:638-643.
    [3]
    Yang MM,Han XP,Qin C,et al. Strategies for targeting and remodeling tumor microenvironment [J]. Acta Pharm Sin(药学学报),2022,57(1):98-108.
    [4]
    Loktev A,Lindner T,Mier W,et al. A tumor-imaging method targeting cancer-associated fibroblasts[J]. J Nucl Med,2018,59(9):1423-1429.
    [5]
    Giesel FL,Kratochwil C,Lindner T,et al. 68Ga-FAPI PET/CT:biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers[J]. J Nucl Med,2019,60(3):386-392.
    [6]
    R?hrich M,Loktev A,Wefers AK,et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT[J]. Eur J Nucl Med Mol Imaging,2019,46(12):2569-2580.
    [7]
    Lindner T,Loktev A,Altmann A,et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein[J]. J Nucl Med,2018,59(9):1415-1422.
    [8]
    Ding F,Huang C,Liang CY,et al. 68Ga-FAPI-04 vs. 18F-FDG in a longitudinal preclinical PET imaging of metastatic breast cancer[J]. Eur J Nucl Med Mol Imaging,2021,49(1):290-300.
    [9]
    Kesch C,Yirga L,Dendl K,et al. High fibroblast-activation-protein expression in castration-resistant prostate cancer supports the use of FAPI-molecular theranostics[J]. Eur J Nucl Med Mol Imaging,2021,49(1):385-389.
    [10]
    K?mek H,Gündo?an C,Etem H,et al. A case with 68Ga-FAPI positive and 18F-FDG negative breast cancer[J]. Mol Imaging Radionucl Ther,2021,30(3):201-204.
    [11]
    Watabe T,Liu YW,Kaneda-Nakashima K,et al. Theranostics targeting fibroblast activation protein in the tumor stroma:64Cu- and 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models[J]. J Nucl Med,2020,61(4):563-569.
    [12]
    Wang LJ,Zhang Y,Wu HB. Intense diffuse uptake of 68Ga-FAPI-04 in the breasts found by PET/CT in a patient with advanced nasopharyngeal carcinoma[J]. Clin Nucl Med,2021,46(5):e293-e295.
    [13]
    Fu LL,Hu KZ,Tang GH,et al. [68Ga]Ga-FAPI-04 PET/CT imaging in signet-ring cell carcinoma of sigmoid colon[J]. Eur J Nucl Med Mol Imaging,2021,48(5):1690-1691.
    [14]
    Dorst DN,Rijpkema M,Buitinga M,et al. Targeting of fibroblast activation protein in rheumatoid arthritis patients:imaging and ex vivo photodynamic therapy[J]. Rheumatology (Oxford),2022,61(7):2999-3009.
    [15]
    Zhou Y,Yang X,Liu HP,et al. Value of [68Ga]Ga-FAPI-04 imaging in the diagnosis of renal fibrosis[J]. Eur J Nucl Med Mol Imaging,2021,48(11):3493-3501.
    [16]
    Varasteh Z,Mohanta S,Robu S,et al. Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-labeled fibroblast activation protein inhibitor,FAPI-04[J]. J Nucl Med,2019,60(12):1743-1749.
    [17]
    Hu KZ,Wang LJ,Wu HB,et al. [18F]FAPI-42 PET imaging in cancer patients:optimal acquisition time,biodistribution,and comparison with [68Ga]Ga-FAPI-04[J]. Eur J Nucl Med Mol Imaging,2022,49(8):2833-2843.
    [18]
    Ma H,Li FZ,Shen GH,et al. Synthesis and preliminary evaluation of 131I-labeled FAPI tracers for cancer theranostics[J]. Mol Pharm,2021,18(11):4179-4187.
    [19]
    Ma H,Li FZ,Shen GH,et al. In vitro and in vivo evaluation of 211At-labeled fibroblast activation protein inhibitor for glioma treatment[J]. Bioorg Med Chem,2022,55:116600.
    [20]
    Loktev A,Lindner T,Burger EM,et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention[J]. J Nucl Med,2019,60(10):1421-1429.
    [21]
    Zhao L,Chen JH,Pang YZ,et al. Fibroblast activation protein-based theranostics in cancer research:a state-of-the-art review[J]. Theranostics,2022,12(4):1557-1569.
    [22]
    Kratochwil C,Giesel FL,Rathke H,et al. [153Sm] Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma[J]. Eur J Nucl Med Mol Imaging,2021,48(9):3011-3013.
    [23]
    Liu YW,Watabe T,Kaneda-Nakashima K,et al. Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model[J]. Eur J Nucl Med Mol Imaging,2022,49(3):871-880.
    [24]
    Trujillo-Benítez D,Luna-Gutiérrez M,Ferro-Flores G,et al. Design,synthesis and preclinical assessment of 99mTc-iFAP for in vivo fibroblast activation protein (FAP) imaging[J]. Molecules,2022,27(1):264.
    [25]
    Lindner T,Altmann A,Kr?mer S,et al. Design and development of 99mTc-labeled FAPI tracers for SPECT imaging and 188Re therapy[J]. J Nucl Med,2020,61(10):1507-1513.
    [26]
    Ruan Q,Feng JH,Jiang YH,et al. Preparation and bioevaluation of 99mTc-labeled FAP inhibitors as tumor radiotracers to target the fibroblast activation protein[J]. Mol Pharm,2022,19(1):160-171.
    [27]
    Lin JJ,Chuang CP,Lin JY,et al. Rational design,pharmacomodulation,and synthesis of [68Ga]Ga-Alb-FAPtp-01,a selective tumor-associated fibroblast activation protein tracer for PET imaging of glioma[J]. ACS Sens,2021,6(9):3424-3435.
    [28]
    Baum RP,Schuchardt C,Singh A,et al. Feasibility,biodistribution,and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286:first-in-humans results[J]. J Nucl Med,2022,63(3):415-423.
    [29]
    Grus T,Lahnif H,Klasen B,et al. Squaric acid-based radiopharmaceuticals for tumor imaging and therapy[J]. Bioconjug Chem,2021,32(7):1223-1231.
    [30]
    Ballal S,Yadav MP,Moon ES,et al. Biodistribution,pharmacokinetics,dosimetry of [68Ga]Ga-DOTA.SA.FAPi,and the head-to-head comparison with [18F]F-FDG PET/CT in patients with various cancers[J]. Eur J Nucl Med Mol Imaging,2021,48(6):1915-1931.
    [31]
    Ballal S,Yadav MP,Kramer V,et al. A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient:new frontier in targeted radionuclide therapy[J]. Eur J Nucl Med Mol Imaging,2021,48(3):942-944.
    [32]
    Moon ES,Elvas F,Vliegen G,et al. Targeting fibroblast activation protein (FAP):next generation PET radiotracers using squaramide coupled bifunctional DOTA and DATA5m chelators[J]. EJNMMI Radiopharm Chem,2020,5(1):19.
    [33]
    Wen XJ,Xu PF,Shi MQ,et al. Evans blue-modified radiolabeled fibroblast activation protein inhibitor as long-acting cancer therapeutics[J]. Theranostics,2022,12(1):422-433.
    [34]
    Xu MX,Zhang P,Ding J,et al. Albumin binder-conjugated fibroblast activation protein inhibitor radiopharmaceuticals for cancer therapy[J]. J Nucl Med,2022,63(6):952-958.
    [35]
    Zhang P,Xu MX,Ding J,et al. Fatty acid-conjugated radiopharmaceuticals for fibroblast activation protein-targeted radiotherapy[J]. Eur J Nucl Med Mol Imaging,2022,49(6):1985-1996.
    [36]
    Moon ES,Ballal S,Yadav MP,et al. Fibroblast activation protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics:a step to improve tumor uptake and retention time[J]. Am J Nucl Med Mol Imaging,2021,11(6):476-491.
    [37]
    Ballal S,Yadav MP,Moon ES,et al. Novel fibroblast activation protein inhibitor-based targeted theranostics for radioiodine-refractory differentiated thyroid cancer patients:a pilot study[J]. Thyroid,2022,32(1):65-77.
    [38]
    Li HS,Ye SM,Li L,et al. 18F- or 177Lu-labeled bivalent ligand of fibroblast activation protein with high tumor uptake and retention[J]. Eur J Nucl Med Mol Imaging,2022,49(8):2705-2715.
    [39]
    Zhao L,Niu B,Fang JY,et al. Synthesis,preclinical evaluation,and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer[J]. J Nucl Med,2022,63(6):862-868.
    [40]
    Hu KZ,Li L,Huang Y,et al. Radiosynthesis and preclinical evaluation of bispecific PSMA/FAP heterodimers for tumor imaging[J]. Pharmaceuticals (Basel),2022,15(3):383.
  • Related Articles

    [1]CAI Xu, WU Xiaoqian, HAN Lingfei, FENG Feng, QU Wei, LIU Wenyuan. Research progress on natural products regulating osteogenic differentiation[J]. Journal of China Pharmaceutical University, 2025, 56(1): 10-21. DOI: 10.11665/j.issn.1000-5048.2024101003
    [2]ZHANG Qili, TIAN Xue, WANG Jie, ZHAO Lei, XIA Pengfei, XU Yanli, XU Fumei, JIA Yinqiang. Research progress of nitroxide radical derivatives and their biological activities[J]. Journal of China Pharmaceutical University, 2024, 55(5): 673-684. DOI: 10.11665/j.issn.1000-5048.2023041902
    [3]REN Yanwei, LI Qiyi, HE Bing, LI Haoyu, ZHAO Li, LI Yuyan. Research progress of enzyme-instructed self-assembly molecules for tumor therapy and imaging[J]. Journal of China Pharmaceutical University, 2023, 54(4): 431-442. DOI: 10.11665/j.issn.1000-5048.2023020602
    [4]YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503
    [5]WANG Zhenghao, GAO Yafeng, ZHANG Lianjun, LIU Chang. Research progress of T cell anti-tumor function regulated by endoplasmic reticulum stress[J]. Journal of China Pharmaceutical University, 2022, 53(5): 518-524. DOI: 10.11665/j.issn.1000-5048.20220502
    [6]YANG Huizhen, MU Weiwei, LIU Yongjun, ZHANG Na. Research progress of drug delivery system based on black phosphorus in tumor diagnosis and treatment[J]. Journal of China Pharmaceutical University, 2020, 51(3): 270-276. DOI: 10.11665/j.issn.1000-5048.20200303
    [7]WANG Chen, XU Jun, LIU Yanhua, WANG Zengtao, HU Yue, TIAN Taiping, YI Mengjuan. Research progress on functionalized graphene oxide as drug carriers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 117-124. DOI: 10.11665/j.issn.1000-5048.20170118
    [8]ZHANG Danfeng, JIAO Yu, LIU Yong, ZHANG Yanmin, ZHANG Zhimin, LU Tao. Progress of small molecule anti-tumor covalent drugs[J]. Journal of China Pharmaceutical University, 2017, 48(1): 1-7. DOI: 10.11665/j.issn.1000-5048.20170101
    [9]HU Yue, CHEN Zhou, LUO Xiaoxing, XUE Xiaoyan. Research progress of 1, 2-dilinoleyloxy-3-dimethylaminopropane-based cationic lipid nanoparticle[J]. Journal of China Pharmaceutical University, 2016, 47(1): 112-117. DOI: 10.11665/j.issn.1000-5048.20160117
    [10]ZHANG Jinghui, WANG Yajing, HU Rong. Roles of Moesin in tumor progression[J]. Journal of China Pharmaceutical University, 2015, 46(3): 371-375. DOI: 10.11665/j.issn.1000-5048.20150319

Catalog

    Article views (395) PDF downloads (671) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return