• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHANG Hui, ZHANG Yameng, DING Xuansheng. Research progress on lipid metabolism in non-small cell lung cancer[J]. Journal of China Pharmaceutical University, 2020, 51(1): 107-113. DOI: 10.11665/j.issn.1000-5048.20200116
Citation: CHANG Hui, ZHANG Yameng, DING Xuansheng. Research progress on lipid metabolism in non-small cell lung cancer[J]. Journal of China Pharmaceutical University, 2020, 51(1): 107-113. DOI: 10.11665/j.issn.1000-5048.20200116

Research progress on lipid metabolism in non-small cell lung cancer

More Information
  • The metabolic reprogramming in cancer cells has recently attracted more and more attention from researchers. Lipid metabolism is involved in many cell processes such as cell growth, apoptosis, exercise, membrane homeostasis, chemotherapy response and drug resistance. This article summerizes the advances in research on fatty acids, cholesterol and phospholipid metabolism in non-small cell lung cancer, which may provide new ideas for the prevention, early diagnosis and treatment of non-small cell lung cancer.
  • [1]
    Chen W,Zheng R,Zuo T,et al.National cancer incidence and mortality in China,2012[J].Chin J Cancer Res,2016,28(1):1-11.
    [2]
    Travis WD,Brambilla E,Riely GJ.New pathologic classification of lung cancer:relevance for clinical practice and clinical trials[J].J Clin Oncol,2013,31(8):992-1001.
    [3]
    Long J,Zhang CJ,Zhu N,et al.Lipid metabolism and carcinogenesis,cancer development[J].Am J Cancer Res,2018,8(5):778-791.
    [4]
    Huang CF,Freter C.Lipid metabolism,apoptosis and cancer therapy[J].Int J Mol Sci,2015,16(1):924-949.
    [5]
    Chi PD,Liu W,Chen H,et al.High-density lipoprotein cholesterol is a favorable prognostic factor and negatively correlated with C-reactive protein level in non-small cell lung carcinoma[J].PLoS One,2014,9(3):e91080.
    [6]
    Lin XJ,Liu LL,Fu YY,et al.Dietary cholesterol intake and risk of lung cancer:a Meta-analysis[J].Nutrients,2018,10(2):E185.
    [7]
    Röhrig F,Schulze A.The multifaceted roles of fatty acid synthesis in cancer[J].Nat Rev Cancer,2016,16(11):732-749.
    [8]
    Currie E,Schulze A,Zechner R,et al.Cellular fatty acid metabolism and cancer[J].Cell Metab,2013,18(2):153-161.
    [9]
    Yang L,Zhang FQ,Wang X,et al.A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer[J].Oncotarget,2016,7(34):55543-55554.
    [10]
    Svensson RU,Parker SJ,Eichner LJ,et al.Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J].Nat Med,2016,22(10):1108-1119.
    [11]
    Grunt TW.Interacting cancer machineries:cell signaling,lipid metabolism,and epigenetics[J].Trends Endocrinol Metab,2018,29(2):86-98.
    [12]
    Park SH,Gammon SR,Knippers JD,et al.Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle[J].J Appl Physiol,2002,92(6):2475-2482.
    [13]
    Witkiewicz AK,Nguyen KH,Dasgupta A,et al.Co-expression of fatty acid synthase and caveolin-1 in pancreatic ductal adenocarcinoma:implications for tumor progression and clinical outcome[J].Cell Cycle,2008,7(19):3021-3025.
    [14]
    Ali A,Levantini E,Teo JT,et al.Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer[J].EMBO Mol Med,2018,10(3):e8313.
    [15]
    Li JG, Bosch-Marce M, Nanayakkara A, et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α[J].Physiol Genomics,2006,25(3):450-457.
    [16]
    Tosi F,Sartori F,Guarini P,et al.Delta-5 and delta-6 desaturases:crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease[J].Adv Exp Med Biol,2014,824:61-81.
    [17]
    Huang J,Fan XX,He JX,et al.SCD1 is associated with tumor promotion,late stage and poor survival in lung adenocarcinoma[J].Oncotarget,2016,7(26):39970-39979.
    [18]
    Yao DW,Luo J,He QY,et al.SCD1 alters long-chain fatty acid(LCFA)composition and its expression is directly regulated by SREBP-1 and PPARγ 1 in dairy goat mammary cells[J].J Cell Physiol,2017,232(3):635-649.
    [19]
    Zhang JQ,Song F,Zhao XJ,et al.EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer[J].Mol Cancer,2017,16(1):127.
    [20]
    Noto A,De Vitis C,Pisanu ME,et al.Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ[J].Oncogene,2017,36(32):4671-4672.
    [21]
    Pisanu ME,Noto A,De Vitis C,et al.Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells[J].Cancer Lett,2017,406:93-104.
    [22]
    Pascual G,Avgustinova A,Mejetta S,et al.Targeting metastasis-initiating cells through the fatty acid receptor CD36[J].Nature,2017,541(7635):41-45.
    [23]
    Liu QP,Luo Q,Halim A,et al.Targeting lipid metabolism of cancer cells:a promising therapeutic strategy for cancer[J].Cancer Lett,2017,401:39-45.
    [24]
    Tang ZY,Shen Q,Xie H,et al.Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer(NSCLC)[J].Oncotarget,2016,7(29):46253-46262.
    [25]
    Cheng X,Li JY,Guo DL.SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy[J].Curr Top Med Chem,2018,18(6):484-493.
    [26]
    Bovenga F,Sabbà C,Moschetta A.Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer[J].Cell Metab,2015,21(4):517-526.
    [27]
    Gorin A,Gabitova L,Astsaturov I.Regulation of cholesterol biosynthesis and cancer signaling[J].Curr Opin Pharmacol,2012,12(6):710-716.
    [28]
    He JM, Shin H, Wei X, et al. NPC1L1 knockout protects against colitis-associated tumorigenesis in mice[J].BMC Cancer,2015,15:189.
    [29]
    Chen QF, Pan ZZ, Zhao M, et al. High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer[J].J Cell Physiol,2018,233(9):6722-6732.
    [30]
    Li JJ, Yan H, Zhao L, et al. Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells[J].Oncotarget,2016,7(32):52392-52403.
    [31]
    Chen Y,Ma Z,Shen X,et al.Serum Lipidomics profiling to identify biomarkers for non-small cell lung cancer[J].Biomed Res Int,2018,2018:5276240.
    [32]
    Belhocine TZ, Prato FS. Transbilayer phospholipids molecular imaging[J].EJNMMI Res,2011,1(1):17.
    [33]
    Sharma B,Kanwar SS.Phosphatidylserine:a cancer cell targeting biomarker[J].Semin Cancer Biol,2018,52(1):17-25.
    [34]
    Zhang XY,Fan JJ,Wang SF,et al.Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer[J].Cancer Immunol Res,2017,5(5):363-375.
    [35]
    Kachler K,Bailer M,Heim L,et al.Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma[J].Cancer Res,2017,77(21):5963-5976.
    [36]
    Lian X,Wang G,Zhou HL,et al.Anticancer properties of fenofibrate:a repurposing use[J].J Cancer,2018,9(9):1527-1537.
    [37]
    Ung MH,MacKenzie TA,Onega TL,et al.Statins associate with improved mortality among patients with certain histological subtypes of lung cancer[J].Lung Cancer,2018,126:89-96.
    [38]
    Zhang X,Teng Y,Yang F,et al.MCM2 is a therapeutic target of lovastatin in human non-small cell lung carcinomas[J].Oncol Rep,2015,33(5):2599-2605.
    [39]
    Huang QF,Wang QG,Li D,et al.Co-administration of 20(S)-protopanaxatriol(g-PPT)and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer[J].J Exp Clin Cancer Res,2019,38(1):129.
    [40]
    Kudryavtseva AV,Krasnov GS,Dmitriev AA,et al.Mitochondrial dysfunction and oxidative stress in aging and cancer[J].Oncotarget,2016,7(29):44879-44905.
    [41]
    Dong SZ,Zhao SP,Wu ZH,et al.Curcumin promotes cholesterol efflux from adipocytes related to PPARγ-LXRα-ABCA1 passway[J].Mol Cell Biochem,2011,358(1/2):281-285.
    [42]
    Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer:a review[J].Target Oncol,2014,9(4):295-310.
    [43]
    Hu ZH,Zeng QL,Zhang B,et al.Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells[J].Biochimie,2014,107(Pt B):257-262.
    [44]
    Tabaczar S,Pieniazek A,Czepas J,et al.Quercetin attenuates oxidative stress in the blood plasma of rats bearing DMBA-induced mammary cancer and treated with a combination of doxorubicin and docetaxel[J].Gen Physiol Biophys,2013,32(4):535-543.
    [45]
    Lee SH,Lee EJ,Min KH,et al.Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression[J].Clin Lung Cancer,2015,16(6):235-243.
    [46]
    Rao PC,Begum S,Sahai M,et al.Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species-dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells[J].Tumour Biol,2017,39(3):1393395099.
  • Related Articles

    [1]LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506
    [2]LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607
    [3]XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309
    [4]YU Shule, MA Lin, WU Zhengfeng, ZHAO Shouxun, WANG Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Non-C21 steroids from the Rhizome of Cynanchum stauntonii[J]. Journal of China Pharmaceutical University, 2015, 46(4): 426-430. DOI: 10.11665/j.issn.1000-5048.20150407
    [5]MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209
    [6]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [7]CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107
    [8]LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27.
    [9]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [10]Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28.

Catalog

    Article views (364) PDF downloads (1185) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return