Citation: | CHANG Hui, ZHANG Yameng, DING Xuansheng. Research progress on lipid metabolism in non-small cell lung cancer[J]. Journal of China Pharmaceutical University, 2020, 51(1): 107-113. DOI: 10.11665/j.issn.1000-5048.20200116 |
[1] |
Chen W,Zheng R,Zuo T,et al.National cancer incidence and mortality in China,2012[J].Chin J Cancer Res,2016,28(1):1-11.
|
[2] |
Travis WD,Brambilla E,Riely GJ.New pathologic classification of lung cancer:relevance for clinical practice and clinical trials[J].J Clin Oncol,2013,31(8):992-1001.
|
[3] |
Long J,Zhang CJ,Zhu N,et al.Lipid metabolism and carcinogenesis,cancer development[J].Am J Cancer Res,2018,8(5):778-791.
|
[4] |
Huang CF,Freter C.Lipid metabolism,apoptosis and cancer therapy[J].Int J Mol Sci,2015,16(1):924-949.
|
[5] |
Chi PD,Liu W,Chen H,et al.High-density lipoprotein cholesterol is a favorable prognostic factor and negatively correlated with C-reactive protein level in non-small cell lung carcinoma[J].PLoS One,2014,9(3):e91080.
|
[6] |
Lin XJ,Liu LL,Fu YY,et al.Dietary cholesterol intake and risk of lung cancer:a Meta-analysis[J].Nutrients,2018,10(2):E185.
|
[7] |
Röhrig F,Schulze A.The multifaceted roles of fatty acid synthesis in cancer[J].Nat Rev Cancer,2016,16(11):732-749.
|
[8] |
Currie E,Schulze A,Zechner R,et al.Cellular fatty acid metabolism and cancer[J].Cell Metab,2013,18(2):153-161.
|
[9] |
Yang L,Zhang FQ,Wang X,et al.A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer[J].Oncotarget,2016,7(34):55543-55554.
|
[10] |
Svensson RU,Parker SJ,Eichner LJ,et al.Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J].Nat Med,2016,22(10):1108-1119.
|
[11] |
Grunt TW.Interacting cancer machineries:cell signaling,lipid metabolism,and epigenetics[J].Trends Endocrinol Metab,2018,29(2):86-98.
|
[12] |
Park SH,Gammon SR,Knippers JD,et al.Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle[J].J Appl Physiol,2002,92(6):2475-2482.
|
[13] |
Witkiewicz AK,Nguyen KH,Dasgupta A,et al.Co-expression of fatty acid synthase and caveolin-1 in pancreatic ductal adenocarcinoma:implications for tumor progression and clinical outcome[J].Cell Cycle,2008,7(19):3021-3025.
|
[14] |
Ali A,Levantini E,Teo JT,et al.Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer[J].EMBO Mol Med,2018,10(3):e8313.
|
[15] |
Li JG, Bosch-Marce M, Nanayakkara A, et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α[J].Physiol Genomics,2006,25(3):450-457.
|
[16] |
Tosi F,Sartori F,Guarini P,et al.Delta-5 and delta-6 desaturases:crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease[J].Adv Exp Med Biol,2014,824:61-81.
|
[17] |
Huang J,Fan XX,He JX,et al.SCD1 is associated with tumor promotion,late stage and poor survival in lung adenocarcinoma[J].Oncotarget,2016,7(26):39970-39979.
|
[18] |
Yao DW,Luo J,He QY,et al.SCD1 alters long-chain fatty acid(LCFA)composition and its expression is directly regulated by SREBP-1 and PPARγ 1 in dairy goat mammary cells[J].J Cell Physiol,2017,232(3):635-649.
|
[19] |
Zhang JQ,Song F,Zhao XJ,et al.EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer[J].Mol Cancer,2017,16(1):127.
|
[20] |
Noto A,De Vitis C,Pisanu ME,et al.Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ[J].Oncogene,2017,36(32):4671-4672.
|
[21] |
Pisanu ME,Noto A,De Vitis C,et al.Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells[J].Cancer Lett,2017,406:93-104.
|
[22] |
Pascual G,Avgustinova A,Mejetta S,et al.Targeting metastasis-initiating cells through the fatty acid receptor CD36[J].Nature,2017,541(7635):41-45.
|
[23] |
Liu QP,Luo Q,Halim A,et al.Targeting lipid metabolism of cancer cells:a promising therapeutic strategy for cancer[J].Cancer Lett,2017,401:39-45.
|
[24] |
Tang ZY,Shen Q,Xie H,et al.Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer(NSCLC)[J].Oncotarget,2016,7(29):46253-46262.
|
[25] |
Cheng X,Li JY,Guo DL.SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy[J].Curr Top Med Chem,2018,18(6):484-493.
|
[26] |
Bovenga F,Sabbà C,Moschetta A.Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer[J].Cell Metab,2015,21(4):517-526.
|
[27] |
Gorin A,Gabitova L,Astsaturov I.Regulation of cholesterol biosynthesis and cancer signaling[J].Curr Opin Pharmacol,2012,12(6):710-716.
|
[28] |
He JM, Shin H, Wei X, et al. NPC1L1 knockout protects against colitis-associated tumorigenesis in mice[J].BMC Cancer,2015,15:189.
|
[29] |
Chen QF, Pan ZZ, Zhao M, et al. High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer[J].J Cell Physiol,2018,233(9):6722-6732.
|
[30] |
Li JJ, Yan H, Zhao L, et al. Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells[J].Oncotarget,2016,7(32):52392-52403.
|
[31] |
Chen Y,Ma Z,Shen X,et al.Serum Lipidomics profiling to identify biomarkers for non-small cell lung cancer[J].Biomed Res Int,2018,2018:5276240.
|
[32] |
Belhocine TZ, Prato FS. Transbilayer phospholipids molecular imaging[J].EJNMMI Res,2011,1(1):17.
|
[33] |
Sharma B,Kanwar SS.Phosphatidylserine:a cancer cell targeting biomarker[J].Semin Cancer Biol,2018,52(1):17-25.
|
[34] |
Zhang XY,Fan JJ,Wang SF,et al.Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer[J].Cancer Immunol Res,2017,5(5):363-375.
|
[35] |
Kachler K,Bailer M,Heim L,et al.Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma[J].Cancer Res,2017,77(21):5963-5976.
|
[36] |
Lian X,Wang G,Zhou HL,et al.Anticancer properties of fenofibrate:a repurposing use[J].J Cancer,2018,9(9):1527-1537.
|
[37] |
Ung MH,MacKenzie TA,Onega TL,et al.Statins associate with improved mortality among patients with certain histological subtypes of lung cancer[J].Lung Cancer,2018,126:89-96.
|
[38] |
Zhang X,Teng Y,Yang F,et al.MCM2 is a therapeutic target of lovastatin in human non-small cell lung carcinomas[J].Oncol Rep,2015,33(5):2599-2605.
|
[39] |
Huang QF,Wang QG,Li D,et al.Co-administration of 20(S)-protopanaxatriol(g-PPT)and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer[J].J Exp Clin Cancer Res,2019,38(1):129.
|
[40] |
Kudryavtseva AV,Krasnov GS,Dmitriev AA,et al.Mitochondrial dysfunction and oxidative stress in aging and cancer[J].Oncotarget,2016,7(29):44879-44905.
|
[41] |
Dong SZ,Zhao SP,Wu ZH,et al.Curcumin promotes cholesterol efflux from adipocytes related to PPARγ-LXRα-ABCA1 passway[J].Mol Cell Biochem,2011,358(1/2):281-285.
|
[42] |
Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer:a review[J].Target Oncol,2014,9(4):295-310.
|
[43] |
Hu ZH,Zeng QL,Zhang B,et al.Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells[J].Biochimie,2014,107(Pt B):257-262.
|
[44] |
Tabaczar S,Pieniazek A,Czepas J,et al.Quercetin attenuates oxidative stress in the blood plasma of rats bearing DMBA-induced mammary cancer and treated with a combination of doxorubicin and docetaxel[J].Gen Physiol Biophys,2013,32(4):535-543.
|
[45] |
Lee SH,Lee EJ,Min KH,et al.Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression[J].Clin Lung Cancer,2015,16(6):235-243.
|
[46] |
Rao PC,Begum S,Sahai M,et al.Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species-dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells[J].Tumour Biol,2017,39(3):1393395099.
|
[1] | LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506 |
[2] | LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607 |
[3] | XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309 |
[4] | YU Shule, MA Lin, WU Zhengfeng, ZHAO Shouxun, WANG Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Non-C21 steroids from the Rhizome of Cynanchum stauntonii[J]. Journal of China Pharmaceutical University, 2015, 46(4): 426-430. DOI: 10.11665/j.issn.1000-5048.20150407 |
[5] | MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209 |
[6] | LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208 |
[7] | CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107 |
[8] | LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27. |
[9] | SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222. |
[10] | Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28. |