• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WU Guoli, LU Xiaolin, XU Jinfang. Application of a conformational restriction strategy in drug design[J]. Journal of China Pharmaceutical University, 2020, 51(3): 357-367. DOI: 10.11665/j.issn.1000-5048.20200314
Citation: WU Guoli, LU Xiaolin, XU Jinfang. Application of a conformational restriction strategy in drug design[J]. Journal of China Pharmaceutical University, 2020, 51(3): 357-367. DOI: 10.11665/j.issn.1000-5048.20200314

Application of a conformational restriction strategy in drug design

Funds: This study was supported by the National Natural Science Foundation of China (No. 31700306)
More Information
  • Received Date: August 21, 2019
  • Revised Date: May 12, 2020
  • Conformational restriction has become one of the important strategies for modification and optimization of lead compounds in structure-based drug design. In this review, we select some recent practical examples from literature to present applications of conformational restriction in structure-based drug design. By introducing fused rings, macrocycles, spiral rings, cyclopropyl groups, bridging rings, methyl groups into molecules, we can find that the conformational restriction strategy is widely used in improving pharmacokinetic properties, enhancing the activity and selectivity, and increasing the novelty of compounds. By using these conformational restriction strategies, the drug-like properties of lead compounds can be significantly improved. This paper can help to provide theoretical guidance and practical experience for innovation in drug design and development.
  • [1]
    . Drug Discov Today Technol, 2004, 1(4): 337-341.
    [2]
    Zheng YJ, Tice CM, Singh SB. Conformational control in structure-based drug design[J]. Bioorg Med Chem Lett, 2017, 27(13): 2825-2837.
    [3]
    Akwabi-Ameyaw A, Bass JY, Caldwell RD, et al. Conformationally constrained farnesoid X receptor (FXR) agonists: naphthoic acid-based analogs of GW 4064[J]. Bioorg Med Chem Lett, 2008, 18(15): 4339-4343.
    [4]
    Young WB, Barbosa J, Blomgren P, et al. Potent and selective Bruton''''s tyrosine kinase inhibitors: discovery of GDC-0834[J]. Bioorg Med Chem Lett, 2015, 25(6): 1333-1337.
    [5]
    Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia[J]. Nat Commun, 2018, 9(1): 5341.
    [6]
    Johnson TW, Richardson PF, Bailey S, et al. Discovery of (10R)-7-amino-12-fluoro-2, 10, 16-trimethyl-15-oxo-10, 15, 16, 17-tetrahydro-2H-8, 4-(metheno)pyrazolo[4, 3-h][2, 5, 11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations[J]. J Med Chem, 2014, 57(11): 4720-4744.
    [7]
    Basit S, Ashraf Z, Lee K, et al. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: clinical and designing strategy update of lorlatinib[J]. Eur J Med Chem, 2017, 134: 348-356.
    [8]
    Zheng YJ, Tice CM, Singh SB. The use of spirocyclic scaffolds in drug discovery[J]. Bioorg Med Chem Lett, 2014, 24(16): 3673-3682.
    [9]
    Shah U, Jayne C, Chackalamannil S, et al. Novel quinoline-based P2-P4 macrocyclic derivatives as Pan-genotypic HCV NS3/4a protease inhibitors[J]. ACS Med Chem Lett, 2014, 5(3): 264-269.
    [10]
    Velázquez F, Chelliah M, Clasby M, et al. Design and synthesis of P2-P4 macrocycles containing a unique spirocyclic proline: a new class of HCV NS3/4A inhibitors[J]. ACS Med Chem Lett, 2016, 7(12): 1173-1178.
    [11]
    Trieselmann T, Wagner H, Fuchs K, et al. Potent cholesteryl ester transfer protein inhibitors of reduced lipophilicity: 1, 1''''-spiro-substituted hexahydrofuroquinoline derivatives[J]. J Med Chem, 2014, 57(21): 8766-8776.
    [12]
    Talele TT. The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. J Med Chem, 2016, 59(19): 8712-8756.
    [13]
    Sampson PB, Liu Y, Patel NK, et al. The discovery of Polo-like kinase 4 inhibitors: design and optimization of spiro[cyclopropane-1, 3''''[3H]indol]-2''''(1''''H)-ones as orally bioavailable antitumor agents[J]. J Med Chem, 2015, 58(1): 130-146.
    [14]
    Sampson PB, Liu Y, Forrest B, et al. The discovery of Polo-like kinase 4 inhibitors: identification of (1R, 2S).2-(3-((E).4-(((cis).2, 6-dimethylmorpholino)methyl)styryl). 1H.indazol-6-yl)-5''''-methoxyspiro [cyclopropane-1, 3''''-indolin]-2''''-one (CFI-400945) as a potent, orally active antitumor agent[J]. J Med Chem, 2015, 58(1): 147-169.
    [15]
    Feng DM, Wai JM, Kuduk SD, et al. 2, 3-Diaminopyridine as a platform for designing structurally unique nonpeptide bradykinin B1 receptor antagonists[J]. Bioorg Med Chem Lett, 2005, 15(9): 2385-2388.
    [16]
    Tang CY, Subramanian R, Kuo Y, et al. Bioactivation of 2, 3-diaminopyridine-containing bradykinin B1 receptor antagonists: irreversible binding to liver microsomal proteins and formation of glutathione conjugates[J]. Chem Res Toxicol, 2005, 18(6): 934-945.
    [17]
    Wood MR, Schirripa KM, Kim JJ, et al. Cyclopropylamino acid amide as a pharmacophoric replacement for 2, 3-diaminopyridine. Application to the design of novel bradykinin B1 receptor antagonists[J]. J Med Chem, 2006, 49(4): 1231-1234.
    [18]
    Cameron KO, Kung DW, Kalgutkar AS, et al. Discovery and preclinical characterization of 6-chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy[J]. J Med Chem, 2016, 59(17): 8068-8081.
    [19]
    Degorce SL, Bodnarchuk MS, Cumming IA, et al. Lowering lipophilicity by adding carbon: one-carbon bridges of morpholines and piperazines[J]. J Med Chem, 2018, 61(19): 8934-8943.
    [20]
    Scott JS, Degorce SL, Anjum R, et al. Discovery and optimization of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) for the treatment of mutant MYD88L265P diffuse large B-cell lymphoma[J]. J Med Chem, 2017, 60(24): 10071-10091.
    [21]
    Foote KM, Blades K, Cronin A, et al. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity[J]. J Med Chem, 2013, 56(5): 2125-2138.
    [22]
    Tully DC, Rucker PV, Chianelli D, et al. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH)[J]. J Med Chem, 2017, 60(24): 9960-9973.
    [23]
    Lopchuk JM, Fjelbye K, Kawamata Y, et al. Strain-release heteroatom functionalization: development, scope, and stereospecificity[J]. J Am Chem Soc, 2017, 139(8): 3209-3226.
    [24]
    Stepan AF, Subramanyam C, Efremov IV, et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor[J]. J Med Chem, 2012, 55(7): 3414-3424.
    [25]
    Makarov IS, Brocklehurst CE, Karaghiosoff K, et al. Synthesis of bicyclo[1.1.1]pentane bioisosteres of internal alkynes and Para-disubstituted benzenes from [1.1.1]propellane[J]. Angew Chem Int Ed Engl, 2017, 56(41): 12774-12777.
    [26]
    Sch?nherr H, Cernak T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions[J]. Angew Chem Int Ed Engl, 2013, 52(47): 12256-12267.
    [27]
    Sun SY, Fu JM. Methyl-containing pharmaceuticals: methylation in drug design[J]. Bioorg Med Chem Lett, 2018, 28(20): 3283-3289.
    [28]
    Angell R, Aston NM, Bamborough P, et al. Biphenyl amide p38 kinase inhibitors 3: improvement of cellular and in vivo activity[J]. Bioorg Med Chem Lett, 2008, 18(15): 4428-4432.
    [29]
    Giordanetto F, Pettersen D, Starke I, et al. Discovery of AZD2716: a novel secreted phospholipase A2 (sPLA2) inhibitor for the treatment of coronary artery disease[J]. ACS Med Chem Lett, 2016, 7(10): 884-889.
    [30]
    Cox CD, McGaughey GB, Bogusky MJ, et al. Conformational analysis of NN-disubstituted-1, 4-diazepane orexin receptor antagonists and implications for receptor binding[J]. Bioorg Med Chem Lett, 2009, 19(11): 2997-3001.
    [31]
    Coleman PJ, Schreier JD, Cox CD, et al. Discovery of [(2R, 5R)-5-{[(5-fluoropyridin-2-yl)oxy]methyl}-2- methylpiperidin-1-yl][5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties[J]. ChemMedChem, 2012, 7(3): 415-424, 337.
  • Related Articles

    [1]XIE Jing, FAN Chunlin, XU Jie, ZHANG Jian, YE Wencai, ZHANG Xiaoqi. Alkaloids of Ervatamia pandacaqui[J]. Journal of China Pharmaceutical University, 2021, 52(3): 287-292. DOI: 10.11665/j.issn.1000-5048.20210304
    [2]LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506
    [3]LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607
    [4]HUANG Qilong, ZHANG Wanjin, LI Yan, CHEN Juan, ZHOU Baoping, ZOU Xiaohan, ZHANG Chunlei, CAO Zhengyu. Alkaloid constituents from Corydalis decumbens[J]. Journal of China Pharmaceutical University, 2017, 48(5): 563-567. DOI: 10.11665/j.issn.1000-5048.20170509
    [5]XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309
    [6]MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209
    [7]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [8]CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107
    [9]LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27.
    [10]Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28.

Catalog

    Article views (467) PDF downloads (959) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return