Citation: | WU Guoli, LU Xiaolin, XU Jinfang. Application of a conformational restriction strategy in drug design[J]. Journal of China Pharmaceutical University, 2020, 51(3): 357-367. DOI: 10.11665/j.issn.1000-5048.20200314 |
[1] |
. Drug Discov Today Technol, 2004, 1(4): 337-341.
|
[2] |
Zheng YJ, Tice CM, Singh SB. Conformational control in structure-based drug design[J]. Bioorg Med Chem Lett, 2017, 27(13): 2825-2837.
|
[3] |
Akwabi-Ameyaw A, Bass JY, Caldwell RD, et al. Conformationally constrained farnesoid X receptor (FXR) agonists: naphthoic acid-based analogs of GW 4064[J]. Bioorg Med Chem Lett, 2008, 18(15): 4339-4343.
|
[4] |
Young WB, Barbosa J, Blomgren P, et al. Potent and selective Bruton''''s tyrosine kinase inhibitors: discovery of GDC-0834[J]. Bioorg Med Chem Lett, 2015, 25(6): 1333-1337.
|
[5] |
Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia[J]. Nat Commun, 2018, 9(1): 5341.
|
[6] |
Johnson TW, Richardson PF, Bailey S, et al. Discovery of (10R)-7-amino-12-fluoro-2, 10, 16-trimethyl-15-oxo-10, 15, 16, 17-tetrahydro-2H-8, 4-(metheno)pyrazolo[4, 3-h][2, 5, 11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations[J]. J Med Chem, 2014, 57(11): 4720-4744.
|
[7] |
Basit S, Ashraf Z, Lee K, et al. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: clinical and designing strategy update of lorlatinib[J]. Eur J Med Chem, 2017, 134: 348-356.
|
[8] |
Zheng YJ, Tice CM, Singh SB. The use of spirocyclic scaffolds in drug discovery[J]. Bioorg Med Chem Lett, 2014, 24(16): 3673-3682.
|
[9] |
Shah U, Jayne C, Chackalamannil S, et al. Novel quinoline-based P2-P4 macrocyclic derivatives as Pan-genotypic HCV NS3/4a protease inhibitors[J]. ACS Med Chem Lett, 2014, 5(3): 264-269.
|
[10] |
Velázquez F, Chelliah M, Clasby M, et al. Design and synthesis of P2-P4 macrocycles containing a unique spirocyclic proline: a new class of HCV NS3/4A inhibitors[J]. ACS Med Chem Lett, 2016, 7(12): 1173-1178.
|
[11] |
Trieselmann T, Wagner H, Fuchs K, et al. Potent cholesteryl ester transfer protein inhibitors of reduced lipophilicity: 1, 1''''-spiro-substituted hexahydrofuroquinoline derivatives[J]. J Med Chem, 2014, 57(21): 8766-8776.
|
[12] |
Talele TT. The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. J Med Chem, 2016, 59(19): 8712-8756.
|
[13] |
Sampson PB, Liu Y, Patel NK, et al. The discovery of Polo-like kinase 4 inhibitors: design and optimization of spiro[cyclopropane-1, 3''''[3H]indol]-2''''(1''''H)-ones as orally bioavailable antitumor agents[J]. J Med Chem, 2015, 58(1): 130-146.
|
[14] |
Sampson PB, Liu Y, Forrest B, et al. The discovery of Polo-like kinase 4 inhibitors: identification of (1R, 2S).2-(3-((E).4-(((cis).2, 6-dimethylmorpholino)methyl)styryl). 1H.indazol-6-yl)-5''''-methoxyspiro [cyclopropane-1, 3''''-indolin]-2''''-one (CFI-400945) as a potent, orally active antitumor agent[J]. J Med Chem, 2015, 58(1): 147-169.
|
[15] |
Feng DM, Wai JM, Kuduk SD, et al. 2, 3-Diaminopyridine as a platform for designing structurally unique nonpeptide bradykinin B1 receptor antagonists[J]. Bioorg Med Chem Lett, 2005, 15(9): 2385-2388.
|
[16] |
Tang CY, Subramanian R, Kuo Y, et al. Bioactivation of 2, 3-diaminopyridine-containing bradykinin B1 receptor antagonists: irreversible binding to liver microsomal proteins and formation of glutathione conjugates[J]. Chem Res Toxicol, 2005, 18(6): 934-945.
|
[17] |
Wood MR, Schirripa KM, Kim JJ, et al. Cyclopropylamino acid amide as a pharmacophoric replacement for 2, 3-diaminopyridine. Application to the design of novel bradykinin B1 receptor antagonists[J]. J Med Chem, 2006, 49(4): 1231-1234.
|
[18] |
Cameron KO, Kung DW, Kalgutkar AS, et al. Discovery and preclinical characterization of 6-chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy[J]. J Med Chem, 2016, 59(17): 8068-8081.
|
[19] |
Degorce SL, Bodnarchuk MS, Cumming IA, et al. Lowering lipophilicity by adding carbon: one-carbon bridges of morpholines and piperazines[J]. J Med Chem, 2018, 61(19): 8934-8943.
|
[20] |
Scott JS, Degorce SL, Anjum R, et al. Discovery and optimization of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) for the treatment of mutant MYD88L265P diffuse large B-cell lymphoma[J]. J Med Chem, 2017, 60(24): 10071-10091.
|
[21] |
Foote KM, Blades K, Cronin A, et al. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity[J]. J Med Chem, 2013, 56(5): 2125-2138.
|
[22] |
Tully DC, Rucker PV, Chianelli D, et al. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH)[J]. J Med Chem, 2017, 60(24): 9960-9973.
|
[23] |
Lopchuk JM, Fjelbye K, Kawamata Y, et al. Strain-release heteroatom functionalization: development, scope, and stereospecificity[J]. J Am Chem Soc, 2017, 139(8): 3209-3226.
|
[24] |
Stepan AF, Subramanyam C, Efremov IV, et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor[J]. J Med Chem, 2012, 55(7): 3414-3424.
|
[25] |
Makarov IS, Brocklehurst CE, Karaghiosoff K, et al. Synthesis of bicyclo[1.1.1]pentane bioisosteres of internal alkynes and Para-disubstituted benzenes from [1.1.1]propellane[J]. Angew Chem Int Ed Engl, 2017, 56(41): 12774-12777.
|
[26] |
Sch?nherr H, Cernak T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions[J]. Angew Chem Int Ed Engl, 2013, 52(47): 12256-12267.
|
[27] |
Sun SY, Fu JM. Methyl-containing pharmaceuticals: methylation in drug design[J]. Bioorg Med Chem Lett, 2018, 28(20): 3283-3289.
|
[28] |
Angell R, Aston NM, Bamborough P, et al. Biphenyl amide p38 kinase inhibitors 3: improvement of cellular and in vivo activity[J]. Bioorg Med Chem Lett, 2008, 18(15): 4428-4432.
|
[29] |
Giordanetto F, Pettersen D, Starke I, et al. Discovery of AZD2716: a novel secreted phospholipase A2 (sPLA2) inhibitor for the treatment of coronary artery disease[J]. ACS Med Chem Lett, 2016, 7(10): 884-889.
|
[30] |
Cox CD, McGaughey GB, Bogusky MJ, et al. Conformational analysis of N, N-disubstituted-1, 4-diazepane orexin receptor antagonists and implications for receptor binding[J]. Bioorg Med Chem Lett, 2009, 19(11): 2997-3001.
|
[31] |
Coleman PJ, Schreier JD, Cox CD, et al. Discovery of [(2R, 5R)-5-{[(5-fluoropyridin-2-yl)oxy]methyl}-2- methylpiperidin-1-yl][5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties[J]. ChemMedChem, 2012, 7(3): 415-424, 337.
|
[1] | XIE Jing, FAN Chunlin, XU Jie, ZHANG Jian, YE Wencai, ZHANG Xiaoqi. Alkaloids of Ervatamia pandacaqui[J]. Journal of China Pharmaceutical University, 2021, 52(3): 287-292. DOI: 10.11665/j.issn.1000-5048.20210304 |
[2] | LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506 |
[3] | LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607 |
[4] | HUANG Qilong, ZHANG Wanjin, LI Yan, CHEN Juan, ZHOU Baoping, ZOU Xiaohan, ZHANG Chunlei, CAO Zhengyu. Alkaloid constituents from Corydalis decumbens[J]. Journal of China Pharmaceutical University, 2017, 48(5): 563-567. DOI: 10.11665/j.issn.1000-5048.20170509 |
[5] | XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309 |
[6] | MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209 |
[7] | LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208 |
[8] | CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107 |
[9] | LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27. |
[10] | Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28. |