• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YANG Jie, LIU Hongming, CHEN Yun, CHEN Ran, ZHANG Jingqing. Pharmacokinetics and in situ intestinal absorption of evodiamine lipidic nanoparticle[J]. Journal of China Pharmaceutical University, 2020, 51(6): 696-701. DOI: 10.11665/j.issn.1000-5048.20200608
Citation: YANG Jie, LIU Hongming, CHEN Yun, CHEN Ran, ZHANG Jingqing. Pharmacokinetics and in situ intestinal absorption of evodiamine lipidic nanoparticle[J]. Journal of China Pharmaceutical University, 2020, 51(6): 696-701. DOI: 10.11665/j.issn.1000-5048.20200608

Pharmacokinetics and in situ intestinal absorption of evodiamine lipidic nanoparticle

Funds: This study was supported by Chongqing Science and Technology Committee (cstc2017shmsA130028)
More Information
  • Received Date: August 04, 2020
  • Revised Date: October 13, 2020
  • The aim of this study was to investigate the in vivo pharmacokinetic behavior characteristics and in situ intestinal absorption characteristics of the evodiamine lipidic nanoparticle in rats. Evodiamine lipidic nanoparticle was prepared by the solvent evaporation methods. The particle size and zeta potential of evodiamine lipidic nanoparticle were measured by dynamic light scattering analysis. Male SD rats were divided into two groups randomly. Each group was given single dose of evodiamine and evodiamine lipidic nanoparticle by gavage at evodiamine dose of 250 mg/kg,respectively. The blood samples were collected at scheduled time points. The content of evodiamine in plasma samples was determined by high performance liquid chromatography (HPLC) method. The main pharmacokinetic parameters of evodiamine and evodiamine lipidic nanoparticle were calculated using DAS 2.1.1 software. Moreover,the single-pass intestinal perfusion model was also established in rats to investigate the in situ intestinal absorption characteristics of evodiamine lipidic nanoparticle. The mean particle size and mean zeta potential of evodiamine lipidic nanoparticle were 180.10 nm and -17.90 mV,respectively. The area under the curve of evodiamine and evodiamine lipidic nanoparticle were (862.60±14.03) and (4084.31±17.21) μg/L·h,respectively,and the peak concentration were (163.40±13.27) and (616.90±21.04) μg/L,respectively. Moreover,the absorption of evodiamine lipidic nanoparticle was significantly higher than that of evodiamine in each segment of intestinal tract in rats (P<0.05). The absorption of evodiamine lipidic nanoparticle in colon was better than those of evodiamine lipidic nanoparticle in stomach,duodenum,jejunum and ileum. The absorption rate constant of evodiamine lipidic nanoparticle in stomach,duodenum,jejunum,ileum and colon were (45.10±6.08)×10-5,(48.20±1.21)×10-5,(22.10±3.18)×10-5,(59.10±1.21)×10-5 and (90.00±3.85)×10-5 s-1,respectively,and the effective permeability coefficient in duodenum,jejunum,ileum and colon was (44.10±0.51)×10-5,(17.21±0.77)×10-5,(35.36±0.31)×10-5 and (40.33±0.34)×10-5 cm/s,respectively.All in all, evodiamine lipidic nanoparticle remarkably improved the in situ intestinal absorption of evodiamine in different segments of the intestinal tract in rats and its oral bioavailability in rats.
  • [1]
    .Beijing:China Medical Science Press,2020:266
    [2]
    Li XL,Wu SC,Dong GQ,et al. Natural product evodiamine with borate trigger unit: discovery of potent antitumor agents against colon cancer[J].ACS Med Chem Lett,2020,11(4):439?444.
    [3]
    Meng T,Fu SP,He DW,et al. Evodiamine inhibits lipopolysaccharide (LPS)-induced inflammation in BV-2 cells via regulating AKT/nrf2-HO-1/NF-κb signaling axis[J].Cell Mol Neurobiol,2020.doi: 10.1007/s10571-020-00839-w.
    [4]
    Yang S,Chen J,Tan T,et al. Evodiamine exerts anticancer effects against 143B and MG63 cells through the wnt/β-catenin signaling pathway[J].Cancer Manag Res,2020,12:2875?2888.
    [5]
    Lin HM,Lin LF,Choi Y,et al. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma[J].Int J Pharm,2020,581:119278.
    [6]
    Tan QY,Liu S,Chen XL,et al. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability[J].AAPS Pharmscitech,2012,13(2):534?547.
    [7]
    Zhang JX,Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective[J].Adv Drug Deliv Rev,2013,65(9):1215?1233.
    [8]
    Zhou SY,Zhang BW,Wei YF,et al. Enhanced dissolution and oral bioavailability of baicalein by cocrystallization[J].J China Pharm Univ (中国药科大学学报),2018,49(6):682?688.
    [9]
    Zhang JQ,Hu JB,Chen DL,et al. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine-phospholipid nanocomplex[J].Int J Nanomed,2014,9:4411?4420.
    [10]
    Liu S,Yang L,Liao H,et al. Pharmacokinetics and bioavailability of evodiamine nanocomplex[J].Acta Acad Med Mil Tert(第三军医大学学报),2013,35(4):325?327.
    [11]
    Yan SL,Liu YY,Feng JF,et al. Difference and alteration in pharmacokinetic and metabolic characteristics of low-solubility natural medicines[J].Drug Metab Rev,2018,50(2):140?160.
    [12]
    Yan SL,Hu JB,Wang X,et al. Pharmacokinetics and in situintestinal absorption of evodiamine complex water-in-oil nanoemulation[J].Acad J Second Mil Med Univ(第二军医大学学报),2017,38(2):249?252.
    [13]
    Zhao J,Liu S,Hu X,et al. Improved delivery of natural alkaloids into lung cancer through woody oil-based emulsive nanosystems[J].Drug Deliv,2018,25(1):1426?1437.
    [14]
    Yang YH,Zhao XQ,Du Y,et al. Preparation,spectroscopy and molecular modelling studies of inclusion complex of vincamine with hydroxypropyl-β-cyclodextrin[J].China Tradit Herb Drugs(中草药),2019,50(2):93?104.
  • Related Articles

    [1]XING Yuanyue, REN Siqi, LIU Qiwei, YANG Jinni, DONG Haijuan, SONG Rui, ZHANG Zunjian. Intestinal absorption mechanism of saikosaponin d in vitro and in vivo[J]. Journal of China Pharmaceutical University, 2022, 53(4): 473-480. DOI: 10.11665/j.issn.1000-5048.20220410
    [2]CHEN Yun, ZENG Mei, XU Jingxin, HU Juan, ZHANG Jingqing. In situ intestinal absorption and pharmacokinetic study of metformin-resveratrol compound water-in-oil nanoemulsion[J]. Journal of China Pharmaceutical University, 2021, 52(3): 325-331. DOI: 10.11665/j.issn.1000-5048.20210309
    [3]YE Qing, HUO Mei-rong, ZHOU Jian-ping. Pharmacokinetics and in situ absorption in rat intestine of paclitaxel-loaded amphiphilic chitosan micelle[J]. Journal of China Pharmaceutical University, 2012, 43(5): 401-405.
    [4]LIN Xu-sheng, JIANG Hai-song, Jian-ping. In situ intestinal absorption kinetics of valsartan in rats[J]. Journal of China Pharmaceutical University, 2012, 43(2): 130-136.
    [5]ZHAO Zhong-xiang, LI Mei-fen, LIN Chao-zhan, XIONG Tian-qin, ZHU Chen-chen. Metabolic transformation of ilexsaponin A1 by intestinal flora[J]. Journal of China Pharmaceutical University, 2011, 42(4): 329-332.
    [6]Role of intestinal cytochrome P450s in drug metabolism.[J]. Journal of China Pharmaceutical University, 2010, 41(2): 186-192.
    [7]GONG Zhen-hua, ZHENG Zeng-juan, GAO Yuan, ZHANG Yi-hua, ZHOU Jian-ping, ZHANG Jian-jun. Enhancement of in situ intestinal absorption of an insoluble NO-donating drug ZLR-8 in rats by spray-dried emulsion[J]. Journal of China Pharmaceutical University, 2009, 40(4): 316-320.
    [8]Absorption of Breviscapine in Small Intestine of Rat[J]. Journal of China Pharmaceutical University, 2003, (1): 67-71.
    [9]Absorption of Phenol Red from Rat Intestine[J]. Journal of China Pharmaceutical University, 1996, (6): 37-41.
    [10]The Absorption of Ramipril in Rat Intestine in Ussing Chambers[J]. Journal of China Pharmaceutical University, 1993, (6): 338-344.
  • Cited by

    Periodical cited type(9)

    1. 戴建英. 在体单向肠灌流法研究知母提取物肠吸收特性. 湖北医药学院学报. 2024(05): 518-523 .
    2. 黄秋妹,石茗,王珍,倪明龙,阙慧卿. 吴茱萸碱制剂的研究进展. 广东化工. 2023(10): 66-68+79 .
    3. 黄秋妹,阙慧卿,李唯,钱丽萍,刘经亮. 吴茱萸碱脂质体的制备工艺研究. 医学信息. 2023(19): 19-22 .
    4. 张佩琛,方栋,郝海军. 吴茱萸碱胃漂浮片制备及其对家兔胃黏膜损伤的保护作用. 中成药. 2023(11): 3527-3533 .
    5. 董丹丹,焦红军,郝海军,范明松. 吴茱萸碱纳米结构脂质载体处方优化和SD大鼠体内口服药动学研究. 中草药. 2022(01): 60-70 .
    6. 宋朔尧,杨贵前,陶玲,沈祥春,张环,李和蓉,王守莉,石惠云,刘文. 吴茱萸碱磷脂复合物自乳化药物递送系统的制备、表征及胃黏膜渗透性研究. 中国药房. 2022(09): 1056-1061 .
    7. 赵梦,刘卓雅,于嘉敏,王芮,范铭婕,乔宏志. 生姜细胞外囊泡样纳米粒载吴茱萸碱的处方工艺及体外释药研究. 南京中医药大学学报. 2022(06): 527-533 .
    8. 决利利,梁婧,李晓婷,王柯静,周珊珊,刘艳菊. 松果菊苷固体脂质纳米粒的制备及其在体肠吸收特性、体内药动学研究. 中成药. 2022(08): 2429-2434 .
    9. 陈云,曾梅,徐靖鑫,胡娟,张景勍. 二甲双胍-白藜芦醇复合物油包水型纳米乳在体肠吸收及其药代动力学研究. 中国药科大学学报. 2021(03): 325-331 . 本站查看

    Other cited types(2)

Catalog

    Article views (239) PDF downloads (611) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return