• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHEN Wenting, LIU Jun. Advances in research on immune checkpoint and its inhibitors in glioma[J]. Journal of China Pharmaceutical University, 2021, 52(1): 104-112. DOI: 10.11665/j.issn.1000-5048.20210115
Citation: CHEN Wenting, LIU Jun. Advances in research on immune checkpoint and its inhibitors in glioma[J]. Journal of China Pharmaceutical University, 2021, 52(1): 104-112. DOI: 10.11665/j.issn.1000-5048.20210115

Advances in research on immune checkpoint and its inhibitors in glioma

Funds: This study was supported by the National Natural Science Foundation of China (No.81973361)
More Information
  • Received Date: September 21, 2020
  • Revised Date: December 13, 2020
  • Conventional treatment of glioma has not significantly improved the prognosis of patients, so people pay more attention to the potential of immuno-checkpoint inhibitors in the treatment of glioma. This article reviews the expression and mechanism of some negative immune checkpoints in gliomas, such as programmed death-1 (PD-1), programmed death ligand-1 (PD-L1), cytotoxic T lymphocyte antigen-4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene-3 (LAG-3), T cellimmunoreceptor with Ig and ITIM domains (TIGIT), B7-H4 and V-domain immunoglobulin suppressor of T-cell activation (VISTA), as well as progress of immune checkpoint inhibitors in clinical research, with a prospect of their future in immunotherapy.
  • [1]
    . Nat Rev Neurol, 2015, 11(9): 504-514.
    [2]
    Lim M, Xia YX, Bettegowda C, et al. Current state of immunotherapy for glioblastoma[J]. Nat Rev Clin Oncol, 2018, 15(7): 422-442.
    [3]
    Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and immunotherapeutic targets in glioblastoma[J]. World Neurosurg, 2017, 102: 494-506.
    [4]
    Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61.
    [5]
    Kelly PN. The cancer immunotherapy revolution[J]. Science, 2018, 359(6382): 1344-1345.
    [6]
    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355.
    [7]
    Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential[J]. Cell, 2015, 161(2): 205-214.
    [8]
    Chen LP, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future[J]. J Clin Invest, 2015, 125(9): 3384-3391.
    [9]
    Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med, 2016, 375(18): 1767-1778.
    [10]
    Yao Y, Tao R, Wang XM, et al. B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells[J]. Neuro Oncol, 2009, 11(6): 757-766.
    [11]
    Heiland DH, Haaker G, Delev D, et al. Comprehensive analysis of PD-L1 expression in glioblastoma multiforme[J]. Oncotarget, 2017, 8(26): 42214-42225.
    [12]
    Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma[J]. Neuro Oncol, 2015, 17(8): 1064-1075.
    [13]
    Nduom EK, Wei J, Yaghi NK, et al. PD-L1 expression and prognostic impact in glioblastoma[J]. Neuro Oncol, 2016, 18(2): 195-205.
    [14]
    Bloch O, Crane CA, Kaur R, et al. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages[J]. Clin Cancer Res, 2013, 19(12): 3165-3175.
    [15]
    Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas[J]. Int J Radiat Oncol Biol Phys, 2013, 86(2): 343-349.
    [16]
    Park J, Kim CG, Shim JK, et al. Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma[J]. Oncoimmunology, 2019, 8(1): e1525243. doi:10.1080/2162402X.2018.1525243.
    [17]
    Antonios JP, Soto H, Everson RG, et al. PD-1 blockade enhances the vaccination-induced immune response in glioma[J]. JCI Insight, 2016, 1(10): e87059.
    [18]
    Garzon-Muvdi T, Theodros D, Luksik AS, et al. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma[J]. Oncotarget, 2018, 9(29): 20681-20697.
    [19]
    Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function[J]. Science, 2008, 322(5899): 271-275.
    [20]
    Fong B, Jin R, Wang XY, et al. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients[J]. PLoS One, 2012, 7(4): e32614.
    [21]
    Liu FK, Huang J, Liu XM, et al. CTLA-4 correlates with immune and clinical characteristics of glioma[J]. Cancer Cell Int, 2020, 20: 7.
    [22]
    Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function[J]. Clin Cancer Res, 2007, 13(7): 2158-2167.
    [23]
    Reardon DA, Gokhale PC, Klein SR, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model[J]. Cancer Immunol Res, 2016, 4(2): 124-135.
    [24]
    Field CS, Hunn MK, Ferguson PM, et al. Blocking CTLA-4 while priming with a whole cell vaccine reshapes the oligoclonal T cell infiltrate and eradicates tumors in an orthotopic glioma model[J]. Oncoimmunology, 2017, 7(1): e1376154.
    [25]
    Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity[J]. Immunol Rev, 2017, 276(1): 97-111.
    [26]
    Huang YH, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534): 386-390.
    [27]
    Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol, 2012, 13(9): 832-842.
    [28]
    Li GZ, Wang Z, Zhang CB, et al. Molecular and clinical characterization of TIM-3 in glioma through 1, 024 samples[J]. Oncoimmunology, 2017, 6(8): e1328339.
    [29]
    Han S, Feng SZ, Xu LS, et al. Tim-3 on peripheral CD4? and CD8? T cells is involved in the development of glioma[J]. DNA Cell Biol, 2014, 33(4): 245-250.
    [30]
    Goods BA, Hernandez AL, Lowther DE, et al. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme[J]. PLoS One, 2017, 12(9): e0181538.
    [31]
    Kim HS, Chang CY, Yoon HJ, et al. Glial TIM-3 modulates immune responses in the brain tumor microenvironment[J]. Cancer Res, 2020, 80(9): 1833-1845.
    [32]
    Kim JE, Patel MA, Mangraviti A, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas[J]. Clin Cancer Res, 2017, 23(1): 124-136.
    [33]
    He YY, Rivard CJ, Rozeboom L, et al. Lymphocyte-activation gene-3, an important immune checkpoint in cancer[J]. Cancer Sci, 2016, 107(9): 1193-1197.
    [34]
    Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems[J]. J Clin Invest, 2007, 117(11): 3383-3392.
    [35]
    Kouo T, Huang LQ, Pucsek AB, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells[J]. Cancer Immunol Res, 2015, 3(4): 412-423.
    [36]
    Xu F, Liu J, Liu D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses[J]. Cancer Res, 2014, 74(13): 3418-3428.
    [37]
    Wang J, Sanmamed MF, Datar I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3[J]. Cell, 2019, 176(1/2): 334-347.e12.
    [38]
    Liu ZJ, Meng QD, Bartek JJr, et al. Tumor-infiltrating lymphocytes (TILs) from patients with glioma[J]. Oncoimmunology, 2017, 6(2): e1252894.
    [39]
    Grosso JF, Goldberg MV, Getnet D, et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells[J]. J Immunol, 2009, 182(11): 6659-6669.
    [40]
    Huang RY, Eppolito C, Lele S, et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model[J]. Oncotarget, 2015, 6(29): 27359-27377.
    [41]
    Harris-Bookman S, Mathios D, Martin AM, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma[J]. Int J Cancer, 2018, 143(12): 3201-3208.
    [42]
    Dougall WC, Kurtulus S, Smyth MJ, et al. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy[J]. Immunol Rev, 2017, 276(1): 112-120.
    [43]
    Zhang Q, Bi JC, Zheng XD, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity[J]. Nat Immunol, 2018, 19(7): 723-732.
    [44]
    Hung AL, Maxwell R, Theodros D, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM[J]. Oncoimmunology, 2018, 7(8): e1466769.
    [45]
    Zang XX, Loke P, Kim J, et al. B7x: a widely expressed B7 family member that inhibits T cell activation[J]. Proc Natl Acad Sci U S A, 2003, 100(18): 10388-10392.
    [46]
    Wang JY, Wang WP. B7-H4, a promising target for immunotherapy[J]. Cell Immunol, 2020, 347: 104008.
    [47]
    Yao Y, Wang XM, Jin KL, et al. B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells[J]. J Neurooncol, 2008, 89(2): 121-129.
    [48]
    Yao Y, Ye HX, Qi ZX, et al. B7-H4(B7x)-mediated cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in glioma patients[J]. Clin Cancer Res, 2016, 22(11): 2778-2790.
    [49]
    Wang L, Rubinstein R, Lines JL, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med, 2011, 208(3): 577-592.
    [50]
    Flies DB, Wang SD, Xu HY, et al. Cutting edge: a monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models[J]. J Immunol, 2011, 187(4): 1537-1541.
    [51]
    Wang JH, Wu GP, Manick B, et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function[J]. Immunology, 2019, 156(1): 74-85.
    [52]
    Johnston RJ, Su LJ, Pinckney J, et al. VISTA is an acidic pH-selective ligand for PSGL-1[J]. Nature, 2019, 574(7779): 565-570.
    [53]
    Wang G, Tai RS, Wu YS, et al. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers[J]. Cytokine Growth Factor Rev, 2020, 52: 1-14.
    [54]
    He XL, Zhou Y, Lu HZ, et al. Prognostic value of VISTA in solid tumours: a systematic review and meta-analysis[J]. Sci Rep, 2020, 10(1): 2662.
    [55]
    Flies DB, Han X, Higuchi T, et al. Coinhibitory receptor PD-1H preferentially suppresses CD4? T cell-mediated immunity[J]. J Clin Invest, 2014, 124(5): 1966-1975.
    [56]
    Borggrewe M, Kooistra SM, Noelle RJ, et al. Exploring the VISTA of microglia: immune checkpoints in CNS inflammation[J]. J Mol Med (Berl), 2020, 98(10): 1415-1430.
    [57]
    Liu J, Yuan Y, Chen WN, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A, 2015, 112(21): 6682-6687.
    [58]
    Reiss SN, Yerram P, Modelevsky L, et al. Retrospective review of safety and efficacy of programmed cell death-1 inhibitors in refractory high grade gliomas[J]. J Immunother Cancer, 2017, 5(1): 99.
    [59]
    Lukas RV, Rodon J, Becker K, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma[J]. J Neurooncol, 2018, 140(2): 317-328.
    [60]
    Gorsi HS, Malicki DM, Barsan V, et al. Nivolumab in the treatment of recurrent or refractory pediatric brain tumors: a single institutional experience[J]. J Pediatr Hematol Oncol, 2019, 41(4): e235-e241.
    [61]
    Carter T, Shaw H, Cohn-Brown D, et al. Ipilimumab and bevacizumab in glioblastoma[J]. Clin Oncol (R Coll Radiol), 2016, 28(10): 622-626.
    [62]
    Omuro A, Vlahovic G, Lim M, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143[J]. Neuro Oncol, 2018, 20(5): 674-686.
    [63]
    Reardon DA, Omuro A, Brandes AA, et al. OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143[J]. Neuro Oncol, 2017, 19(suppl 3): iii21.
    [64]
    Wang X, Guo GC, Guan H, et al. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 87.
    [65]
    Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial[J]. JAMA Oncol, 2020, 6(7): 1003-1010.
  • Related Articles

    [1]ZHU Song, JIANG Jing, LIU Yang, ZOU Wenyu, HU Pengwei, LU Yuting, SONG Min, HANG Taijun. Structural identification of the related substances of lorazepam tablets by LC-MS[J]. Journal of China Pharmaceutical University, 2021, 52(5): 555-565. DOI: 10.11665/j.issn.1000-5048.20210507
    [2]LIANG Fangmei, NI Yueling, WANG Lu, HANG Taijun, SONG Min. Structural identification of the related substances of fusidic acid by LC-MS[J]. Journal of China Pharmaceutical University, 2018, 49(3): 322-332. DOI: 10.11665/j.issn.1000-5048.20180311
    [3]YIN Xiaoya, WANG Cheng, MING Guojun, HANG Taijun. Identification of the related substances in pioglitazone hydrochloride by hyphenated LC-MS techniques[J]. Journal of China Pharmaceutical University, 2017, 48(6): 701-710. DOI: 10.11665/j.issn.1000-5048.20170611
    [4]XU Guijun, LI Zhijun, WANG Qi, TAN Jiejun, SHI Guoshan, QI Wei, LI Di, WANG Youpeng. Isolation and identification of anti-inflammatory constituents from Houttuynia cordata[J]. Journal of China Pharmaceutical University, 2016, 47(3): 294-298. DOI: 10.11665/j.issn.1000-5048.20160308
    [5]CHEN Wenhua, ZOU Limin, ZHANG Fei, ZHANG Liandi, LIAO Mingyi, DING Li. Identification of the related substances in bendamustine hydrochloride[J]. Journal of China Pharmaceutical University, 2015, 46(3): 333-338. DOI: 10.11665/j.issn.1000-5048.20150312
    [6]ZHOU Yongmei, SHI Xianming, MA Lei, ZHANG Sifang. Isolation and identification of Withaphysalins from Physalis minima[J]. Journal of China Pharmaceutical University, 2015, 46(1): 62-65. DOI: 10.11665/j.issn.1000-5048.20150107
    [7]RAO Ya-kun, DING Li, YU Yong. Structural identification of two major impurities in sodium levofolinate[J]. Journal of China Pharmaceutical University, 2012, 43(4): 350-354.
    [8]WANG Ying, YIN Hong-ping, CHEN Tao, WANG Min. Preliminary structural identification and protection on renal cell injury of acidic polysaccharide from Cordyceps sinensis[J]. Journal of China Pharmaceutical University, 2009, 40(6): 559-564.
    [9]Structure Studies of N-(4-chlorobenzyl)-2,3-methylenedio-xyl-9-acetoxyl-10-methoxy-7,8,13,13a-tetrahydro-8H-dibenzo-quinolizine chloride[J]. Journal of China Pharmaceutical University, 2002, (1): 72-74.
    [10]IDENTIFICATION OF SYNTHETIC BY-PRODUCT N-(4-CHLOROBENZOYL)-DICYCLOHEXANYLUREA BY FOURIER TRANSFORM MASS SPECTROMETRY[J]. Journal of China Pharmaceutical University, 1989, (6): 367-369.

Catalog

    Article views (289) PDF downloads (840) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return