Citation: | WU Jianbing, HUANG Zhangjian, ZHANG Yihua. Research and reflections on the nitric oxide-donating cardio-cerebrovascular drugs[J]. Journal of China Pharmaceutical University, 2021, 52(2): 129-143. DOI: 10.11665/j.issn.1000-5048.20210201 |
[1] |
. Chem Rev,2002,102(4):1091-11341.
|
[2] |
Reid T, Oronsky B, Scicinski J,et al. Safety and activity of RRx-001 in patients with advanced cancer:a first-in-human, open-label, dose-escalation phase 1 study[J]. Lancet Oncol, 2015, 16(9): 1133-1142.
|
[3] |
Sausbier M,Schubert R,Voigt V,et al. Mechanisms of NO/cGMP-dependent vasorelaxation[J], Circ Res, 2000, 87(9): 825-830.
|
[4] |
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective[J]. Trends Mol Med, 2009, 15(9): 391-404.
|
[5] |
Huang Z, Fu J, Zhang Y. Nitric oxide donor-based cancer therapy: advances and prospects[J]. J Med Chem, 2017, 60(18): 7617-7635.
|
[6] |
F?rstermann U,Sessa WC.Nitric oxide synthases:regulation and function[J]. Eur Heart J, 2012, 33(7): 829-837.
|
[7] |
Alonso D, Radomski MW. Nitric oxide,platelet function, myocardial infarction and reperfusion therapies[J]. Heart Fail Rev, 2003, 8(1): 47-54.
|
[8] |
Bolotina, VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle[J]. Nature, 1994, 368(6474): 850-853.
|
[9] |
Wang XJ. Nitric oxide and cerebral ischemia-reperfusion injury[J]. Foreign Med Sci (Geriatr) (国外医学 老年医学分册), 2004, 1(3): 114-117.
|
[10] |
Picón-Pagès P, Garcia-Buendia J, Mu?oz FJ. Functions and dysfunctions of nitric oxide in brain[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(8): 1949-1967.
|
[11] |
Scatena R, Bottoni P, Martorana GE, et al. Nitric oxide donor drugs: an update on pathophysiology and threapreutical potential[J]. Exert Opin Investg Drug, 2005, 14(7): 835-846.
|
[12] |
Chen ZQ, Mou RT, Feng DX, et al. The role of nitric oxide in stroke[J]. Med Gas Res, 2017, 7(3): 194-203.
|
[13] |
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2014, 115: 157-188.
|
[14] |
Sun Y, Zhang L, Chen Y, et al. Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus[J]. Stroke, 2015, 46(8): 2347-2353.
|
[15] |
Lee RHC, Lee MHH, Wu CYC, et al. Cerebral ischemia and neuroregeneration[J].Neural Regen Res,2018,13(3):373-385.
|
[16] |
Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection[J]. Mol Brain, 2018, 11(1): 15.
|
[17] |
Lipton SA, Stamler JS. Actions of redox-related congeners of nitric oxide at the NMDA receptor[J]. Neuropharmacology, 1994, 33(11): 1229-1233.
|
[18] |
Nakamura T, Lipton SA. Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases[J]. Cell Death Differ, 2011, 18(9): 1478-1486.
|
[19] |
Marco-Contelles J, Zhang Y. From seeds of Apium graveolens Linn. to a cerebral ischemia medicine: the long journey of 3-n-butylphthalide[J]. J Med Chem,2020,63(21): 12485-12510.
|
[20] |
Li J, Wang XL. Studies on in vivo and in vitro transformation and pharmacokinetics of the prodrug dl-PHPB[J]. Chin pharmacologist (中国药理通讯), 2007, 24(3):50-51.
|
[21] |
Li J, Xu SF, Peng Y, et al. Conversion and pharmacokinetics profiles of a novel pro-drug of 3-n-butylphthalide, potassium 2-(1-hydroxypentyl)-benzoate, in rats and dogs[J]. Acta Pharmacol Sin, 2018, 39(2): 275-285.
|
[22] |
Choi JH, Park JK, Kim KM, et al. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid[J]. J BioChem Mol Toxicol, 2018, 32(1): 1-9.
|
[23] |
Koh PO. Ferulic acid modulates nitric oxide synthase expression in focal cerebral ischemia[J]. Lab Anim Res, 2012, 28(4):273-278.
|
[24] |
Min ZL, Zhang YH, Zhuang P, et al. Synthesis and anti-platelet activities of nitric oxide-releasing derivatives of 3-butylphthalide[J]. J China Pharm Univ (中国药科大学学报),2008,39(5): 392-397.
|
[25] |
Li Y, Wang X, Fu R, et al.Synthesis and evaluation of nitric oxide-releasing derivatives of 3-n-butylphthalide as antiplatelet agents[J]. Bioorg Med Chem Lett, 2011, 21(14): 4210-4214.
|
[26] |
Wang X, Li Y, Zhao Q, et al. Design, synthesis and evaluation of nitric oxide releasing derivatives of 3-n-butylphthalide as antiplatelet and antithrombotic agents[J]. Org Biomol Chem, 2011, 9(16): 5670-5681.
|
[27] |
Li N, Wang X, Li T, et al. Identification of circulatory and excretory metabolites of a novel nitric oxide donor ZJM-289 in rat plasma, bile, urine and faeces by liquid chromatography-tandem mass spectrometry[J].Xenobiotica,2011,41(9): 805-817.
|
[28] |
Zhuang P, Ji H, Zhang YH, et al. ZJM-289, a novel nitric oxide donor, alleviates the cerebral ischemic-reperfusion injury in rats[J]. Clin Exp Pharmacol Physiol,2010,37(3):e121-e127.
|
[29] |
Li N, Qiu Z, Wang X, et al. Pharmacokinetics in sprague-dawley rats and beagle dogs and in vitro metabolism of ZJM-289,a novel nitric dioxide donor[J].Xenobiotica,2014,44(1): 59-69.
|
[30] |
Peng Y, Zeng XK, Feng YP, et al. Antiplatelet and antithrombotic activity of L-3-n-butylphthalide in rats[J]. J Cardiovasc Pharmacol, 2004, 43(6): 876-881.
|
[31] |
Chang Q, Wang XL. Effects of chiral 3-n-butylphthalide on apoptosis induced by transient focal cerebral ischemia in rats[J]. Acta Pharmacol Sin, 2003, 24(8):796-804.
|
[32] |
Peng Y, Sun J, Hon S, et al. L-3-n-Butylphthalide improves cognitive impairment and reduces amyloid-β in a transgenic model of Alzheimer''s disease[J]. J Neurosci, 2010, 30(24): 8180-8189.
|
[33] |
Wang X, Zhao Q, Wang X, et al. Studies on the enantiomers of ZJM-289: synthesis and biological evalution of antiplatelet, antithrombotic and neuroprotective activities[J]. Org Biomol Chem, 2012, 10(45): 9030-9040.
|
[34] |
Zhang C, Zhang Z, Zhao Q, et al. (S)-ZJM-289 preconditioning induces a late phase protection against nervous injury induced by transient cerebral ischemia and oxygen-glucose deprivation[J]. Neurotox Res, 2014, 26(1): 16-31.
|
[35] |
Zhao Q, Zhang C, Wang X, et al. (S)-ZJM-289, a nitric oxide-releasing derivative of 3-n-butylphthalide,protects against ischemic neuronal injury by attenuating mitochondrial dysfunction and associated cell death[J]. Neurochem Int, 2012, 60(2): 134-144.
|
[36] |
Kida K, Ichinose F. Hydrogen sulfide and neuroinflammation[J]. Handb Exp Pharmacol, 2015, 230:181-189.
|
[37] |
Cui Y, Duan X, Li H, et al. Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats[J]. Mol Neurobiol, 2016, 53(6): 3646-3657.
|
[38] |
Lee M, McGeer E, Kodela R, et al. NOSH-aspirin (NBS-1120),a novel nitric oxide and hydrogen sulfide releasing hybrid,attenuates neuroinflammation induced by microglial and astrocytic activation: a new candidate for treatment of neurodegenerative disorders[J]. Glia, 2013, 61(10): 1724-1734.
|
[39] |
Yin W, Lan L, Huang Z, et al. Discovery of a ring-opened derivative of 3-n-butylphthalide bearing NO/H2S-donating moieties as a potential anti-ischemic stroke agent[J]. Eur J Med Chem, 2016, 115(10): 369-380.
|
[40] |
Ji J, Xiang P, Li T, et al. NOSH-NBP, a novel nitric oxide and hydrogen sulfide-releasing hybrid, attenuates ischemic stroke-induced neuroinflammatory injury by modulating microglia polarization[J]. Front Cell Neurosci, 2017, 11: 154.
|
[41] |
Wang X, Wang Z, Ling J, et al. Synthesis and biological evaluation of nitric oxide-hydrogen sulfide releasing derivatives of (S)-3-n-butylphthalide as potential antiplatelet agents[J]. Chin J Nat Medicines, 2016, 14(12): 946-953.
|
[42] |
Tachikawa M, Hirose S, Akanuma SI, et al. Developmental changes of l-arginine transport at the blood-brain barrier in rats[J]. Microvasc Res, 2018, 117: 16-21.
|
[43] |
Koga Y, Akita Y, Nishioka J, et al. L-arginine improves the symptoms of strokelike episodes in MELAS[J]. Neurology, 2005, 64(4):710-712.
|
[44] |
Fonar G, Polis B, Meirson T, et al. Intracerebroventricular administration of L-arginine improves spatial memory acquisition in triple transgenic mice via reduction of oxidative stress and apoptosis[J]. Transl Neurosci, 2018, 9: 43-53.
|
[45] |
Chen SF, Pan MX, Tang JC, et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury [J]. Mol Brain, 2020, 13(1): 63.
|
[46] |
Chinese Pharmacopoeia Commission.Chinese Pharmacopoeia [M]. 2015 Edition, Part II., Beijing: China Medical Science and Technology Press, 2015:1110-1111.
|
[47] |
Montaner J, Campos M, Cristobo I, et al. Role of PSD-95 inhibitors in stroke and neuroprotection: A systematic view on NA-1(Tat-NR2B9c)[J]. Drugs Fut, 2013, 38(7): 485-497.
|
[48] |
Hill MD, Goyal M, Menon BK, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke(ESCAPE-NA1):a multicentre,double-blind, randomised controlled trial [J]. Lancet, 2020, 395(10227): 878-887.
|
[49] |
Ozaki T, Nakamura H, Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit[J]. Neurochem Int, 2019, 126: 246-251.
|
[50] |
Zhang YH, Huang ZJ, Zhu JY. Salt formed by
2-(1-acyloxy n-pentyl) benzoic acid and basic amino acid or aminoguanidine, preparation method and use[P].ZL |
[51] |
Jung KH, Chu K, Ko SY, et al. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury[J]. Stroke, 2006, 37(11): 2744-2750.
|
[52] |
Kuzenkov VS, Krushinskii AL. Effect of sodium nitrite and L-NNA on the outcome of experimental ischemic stroke[J]. Bull Exp Biol Med, 2015, 159(2): 217-220.
|
[53] |
Pluta RM, Oldfield EH, Bakhtian KD, et al. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers[J]. PLoS One, 2011, 6(1):
|
[54] |
Webb AJ, Milsom AB, Rathod KS, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase[J]. Circ Res, 2008, 103(9): 957-964.
|
[55] |
Schopfer FJ, Baker PR, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response[J]?Trends Biochem Sci, 2003, 28(12): 646-654.
|
[56] |
Yin W. Study on design, synthesis and bioactivity of novel anticerebral ischemia drugs[D]. China Pharmaceutical University, 2016.
|
[57] |
Schror K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis[J]. Semin Thromb Hemost, 1997, 23(4): 349-356.
|
[58] |
Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis[J]. Circ Res, 2001, 88(8): 756-762.
|
[59] |
Zhou Z, Jiang LY, Zhang YH, et al. Synthesis and antithrombotic activity of acetylsalicyl ferulic acid coupled with furoxans and nitrates[J]. Acta Pharm Sin, 2006, 41(11): 1050-1056.
|
[60] |
Zhou Z, Jiang LY, Zhang YH, et al. Synthesis and antithrombotic activity of acetylsalicyl p-coumaric acid coupled with furoxans and nitrates[J]. Chin J Org Chem, 2006, 26(10): 1403-1408.
|
[61] |
Sun Y, Ji H, Zhang YH, et al. Anti thrombotic activities and mechanism of NO donating-aspirin derivativeⅡ6[J]. Chin Pharmacol Bull (中国药理学通报), 2006, 22(7): 840-844.
|
[62] |
Zhou Z, Lai YS, Zhang YH, et al. Synthesis and antithrombotic activity of 3-Aryl-1, 2, 3, 4-oxatriazole-5-imine-coupled aspirin[J]. Chin J Org Chem (有机化学), 2008, 28(5): 819-824.
|
[63] |
Li LW, Ji H, Zhang YH, et al. Anti-thrombotic effect of compound ZA-6, a novel NO-donating-aspirin derivative[J]. J China Pharm Univ (中国药科大学学报), 2008, 39(6): 548-552.
|
[64] |
Guo ZR, Zhu FM, Zhang YT. Novel substituted 2-benzo [c] furanone compounds, preparation methods thereof, and pharmaceutical compositions containing them[P]. ZL1330069
A, |
[65] |
Megson IL, Lslie SJ. LA-419, a nitric-oxide donor for the treatment of cardiovascular disorders [J]. Curr Opin Investig Drugs, 2009, 10(3): 276-285.
|
[66] |
Wu J, Lin QQ, Wang XL, et al. Synthesis and in vitro antiplatelet aggregation activity of isosorbide mononitrate-based 3-n-butylphthalide derivatives[J]. Chin J Med Chem (中国药物化学杂志), 2012, 22(6): 483-489.
|
[67] |
Yang CY, Huang ZJ, Lin QQ, et al. Synthesis and evaluation of carbamate-isosorbide-3-n-butylphthalide ring opening derivative trihybrids as novel platelet aggregation inhibitors[J]. J China Pharm Univ (中国药科大学学报), 2013, 44(3): 202-206.
|
[68] |
Shi WB, Lai YS, Zhang YH. Synthesis of angiotensin Ⅱ receptor antagonist telmisartan[J]. Chin J Med Chem (中国药物化学杂志), 2005, 15(4): 234-236.
|
[69] |
Li YQ, Ji H, Zhang YH, et al. WB1106, a novel nitric oxide-releasing derivative of telmisartan, inhibits hypertension and improves glucose metabolism in rats[J]. Eur J Pharmacol, 2007, 577(1-3): 100-108.
|
[70] |
Xu X, Zhang YH, Peng SX, et al. Study on NO-Donating antihypertensive agents I. Synthesis and antihypertensive activity of C-3 nitrate or furoxan substituted benzopyrans[J]. J China Pharm Univ (中国药科大学学报), 2005, 36(6): 488-495.
|
[71] |
Xu X, Zhang YH, Peng SX, et al. Synthesis and anti-hypertensive activity of C-4 substituted NO-donating benzopyran derivatives[J]. Chin J Med Chem (中国药物化学杂志), 2006, 16(1): 15-19.
|
[72] |
Togo T, Katsuse O, Iseki E. Nitric oxide pathways in Alzheimer''s disease and other neurodegenerative dementias[J]. Neurol Res, 2004, 26(5): 563-566.
|
[73] |
Fang L, Appenroth D, Decker M, et al. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates[J]. J Med Chem, 2008, 51(4): 713-716.
|
[74] |
Fang L, Appenroth D, Decker M, et al. NO-donating tacrine hybrid compounds improve scopolamine-induced cognition impairment and show less hepatotoxicity[J]. J Med Chem, 2008, 51(24): 7666-7669.
|
[75] |
Keeble JE, Moore PK. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs[J]. Br J Pharmacol, 2002, 137(3): 295-310.
|
[76] |
Benza RL, Miller DP, Barst RJ, et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry[J]. Chest, 2012, 142(2): 448 -456.
|
[77] |
Ichinose F, Roberts JD, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential[J]. Circulation, 2004, 109(25): 3106-3111.
|
[78] |
Wang YY,Yang YX,Zhe H,et al.Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties[J]. Drug Des Devel Ther, 2014, 8:2075-2088.
|
[79] |
Eba S, Hoshikawa Y, Moriguchi T, et al. The nuclear factor erythroid 2-related factor 2 activator oltipraz attenuates chronic hypoxia-induced cardiopulmonary alterations in mice[J]. Am J Respir Cell Mol Biol, 2013, 49(2): 324-333.
|
[80] |
Cheng Y, Gong Y, Qian S, et al. Identification of a novel hybridization from isosorbide 5-mononitrate and bardoxolone methyl with dual activities of pulmonary vasodilation and vascular remodeling inhibition on pulmonary arterial hypertension rats[J]. J Med Chem, 2018, 61(4): 1474-1482.
|
[81] |
Feng XC, Ji H, Zhang YH, et al. Effect of ZLR-8 on the healing of gastric ulcer and NO releasing in vitro[J]. J China Pharm Univ (中国药科大学学报), 2004, 35(4): 357-360.
|
[82] |
Wang WD, Zhang YH, Ji H, et al. Synthesis and anti-inflammatory activities of NO releasing-flobufen derivatives[J]. Chin J Med Chem (中国药物化学杂志), 2004, 14(1): 1-8.
|
[83] |
Wang WD, Zhang YH, Zhang ZG, et al. Synthesis and anti-inflammatory analgesic activities of 2-(2,6-dichlorophenylamino)-benzeneacetic acid (3-nitroxymethyl) phenyl ester[J]. J China Pharm Univ (中国药科大学学报),2003,34(1): 13-16.
|
[84] |
Li RW, Zhang YH, Ji H, et al. Synthesis and anti-inflammatory analgesic activities of phenylfuroxan-coupled diclofenac[J]. Acta Pharmacol Sin, 2002, 37(1): 27-32.
|
[85] |
Li RW, Zhang YH, Ji H, et al. Synthesis and anti-inflammatory activity of benzenesulfonylfuroxan-coupled diclofenac[J]. Acta Pharmacol Sin, 2001, 36(11): 821-826.
|
[86] |
Yu XL, Ji H, Zhang YH, et al. Pharmacological activity screening of furoxan-coupled diclofenac compounds[J]. J China Pharm Univ (中国药科大学学报), 2001, 32(4): 301-305.
|
[87] |
Huang Z, Velázquez C, Abdellatif KR, et al. Acyclic triaryl olefins possessing a sulfohydroxamic acid pharmacophore: synthesis, nitric oxide/nitroxyl release, cyclooxygenase inhibition, and anti-inflammatory studies[J]. Org Biomol Chem, 2010, 8(18): 4124-4130.
|
[88] |
Huang Z, Velázquez CA, Abdellatif KR, et al. Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal antiinflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies[J]. J Med Chem, 2011, 54(5):1356-1364.
|
[89] |
Fang L, Zhang Y, Zha X. Nitric oxide and osteoporosis[J]. Chin Pharm J (中华药学杂志), 2005, 40(22): 1681-1683.
|
[90] |
Fang L, Huang ZJ, Zhang YH, et al. Synthesis, anti-inflammatory activity and safety of hydrocortisone derivatives coupled with furoxans and nitrates[J]. Chin J Org Chem (有机化学), 2008, 28(5):841-850.
|
[91] |
Fang L, Zhang Y, Lehmann J, et al. Design and synthesis of furoxan-based nitric oxide-releasing glucocorticoid derivatives with potent anti-inflammatory activity and improved safety [J]. Bioorg Med Chem Lett, 2007, 17(4): 1062-1066.
|
[92] |
Tamboli Y, Lazzarato L, Marini E, et al. Synthesis and preliminary biological profile of new NO-donor tolbutamide analogues[J]. Bioorg Med Chem Lett, 2012, 22(11): 3810-3815.
|
[93] |
Kaur J, Bhardwaj A, Huang Z, et al. Synthesis and biological investigations of nitric oxide releasing nateglinide and meglitinide type II antidiabetic prodrugs: in-vivo antihyperglycemic activities and blood pressure lowering studies [J]. J Med Chem, 2012, 55(17): 7883-7891.
|
[94] |
Liu J, Ma W, Huang Z, et al. Design and synthesis of rosiglitazone-ferulic acid-nitric oxide donor trihybrids for improving glucose tolerance [J]. Eur J Med Chem, 2018, 162: 650-665.
|
[95] |
Chiesa JJ, Baidanoff FM, Golombek DA. Don''t just say no: differential pathways and pharmacological responses to diverse nitric oxide donors[J]. Biochem Pharmacol,2018, 156: 1-9.
|
[96] |
Nash KM, Schiefer IT, Shah ZA, et al. Development of a reactive oxygen specie S-sensitive nitric oxide synthase inhibitor for the treatment of ischemic stroke[J]. Free Radic Biol Med, 2018, 115: 395-404.
|
[97] |
Chen C, Yun XJ, Liu LZ, et al. Exogenous nitric oxide enhances the prophylactic effect of aminoguanidine, a preferred iNOS inhibitor, on bleomycin-induced fibrosis in the lung:implications for the direct roles of the NO molecule in vivo[J]. Nitric Oxide, 2017, 70: 31-41.
|
[98] |
Zhou HL, Zhang R, Anand P, et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury[J]. Nature, 2019, 565(7737): 96-100.
|
[99] |
Seth P, Hsieh PN, Jamal S, et al. Regulation of MicroRNA machinery and development by interspecies S-nitrosylation[J]. Cell, 2019, 176(5): 1014-1025.
|
[100] |
Choi MS. Pathophysiological role of S-nitrosylation and transnitrosylation depending on S-nitrosoglutathione levels regulated by S-nitrosoglutathione reductase[J]. Biomol Ther (Seoul), 2018, 26(6): 533-538.
|
[101] |
Muthukaman N, Deshmukh S, Tondlekar S, et al. Discovery of 5-(2-chloro-4''-(1H-imidazol-1-yl)-[1,1''-biphenyl]-4-yl)-1H-tetrazole as potent and orally efficacious S-nitrosoglutathione reductase (GSNOR) inhibitors for the potential treatment of COPD[J]. Bioorg Med Chem Lett, 2018, 28(23/24): 3766-3773.专家介绍]张奕华:中国药科大学教授(二级)、博士生导师,原校学位评定委员会、学术委员会、职称评定委员会委员,校新药研究中心负责人;中国药学会药物化学专业委员会委员(2002-2016年);国家863计划、国家自然科学基金评审专家,国家和江苏省新药评审专家;《中国药科大学学报》副主编,《中国药学年鉴》《药学学报》《中国药物化学杂志》《国际药学研究杂志》等编委,Journal of Medicinal Chemistry (JMC), European Journal of Medicinal Chemistry (EJMC)等国际杂志特约审稿人。近10多年来,该课题组将生命科学的前沿领域和生物技术的最新成就与创新药物紧密关联,设计、合成了5类NO供体型心脑血管药物和4类降低其他药物心血管不良反应的药物,负责承担了与NO相关的2个国家重大新药创制项目、10个国家自然科学基金项目以及近30个省部级项目的研究。在国内外学术期刊上发表涉及NO及相关论文350余篇,其中J Med Chem论文25篇。作为副主编或参编协助彭司勋院士等人出版《药物化学》、《药物化学进展》、《药物化学—回顾与发展》等教材和专著8本。申请新药发明专利20多项,含PCT专利2项,已授权19项。作为第一完成人获国家医药局科技进步三等奖2项,国家科技成果证书1本和江苏省医药局科技进步二等奖1项。享受国务院的政府特殊津贴。课题组培养了40名博士和56名硕士,其中1名博士获全国优秀博士论文提名奖,3名博士获中国药学会青年药物化学奖(SERVIER奖),2名博士获江苏省优秀博士论文奖,1名博士获中国药学会优秀论文奖,1名博士获Eli Lilly Asia Outstanding Graduate Thesis Award,2名硕士获江苏省优秀硕士论文奖。
|
[1] | YANG Chengwei, GUO Yali, LI Caolong. Synthesis and antibacterial activity of water-soluble limonin benzoylhydrazone derivatives[J]. Journal of China Pharmaceutical University, 2022, 53(3): 273-277. DOI: 10.11665/j.issn.1000-5048.20220303 |
[2] | GAO Liuzhou, XIE Yusuo, HUANG Wenlong, HU Guoqiang. Synthesis, antibacterial and antitumor activities of 1-cycloproyl-6-fluoro-7-(hydrazone)-quinolin-4(1H)-one-carboxylic acids[J]. Journal of China Pharmaceutical University, 2014, 45(6): 662-664. DOI: 10.11665/j.issn.1000-5048.20140607 |
[3] | PANG Daorui, LIU Fan, SHI Ying, LIU Jun, SHEN Weizhi, ZOU Yuxiao, LIAO Sentai, XIAO Gengsheng. Antibacterial activity of 10 phenolic compounds from mulberry[J]. Journal of China Pharmaceutical University, 2014, 45(2): 221-226. DOI: 10.11665/j.issn.1000-5048.20140216 |
[4] | HU Guo-qiang, HOU Li-li, WANG Guo-qiang, DUAN Nan-nan, WEN Xiao-yi, CAO Tie-yao, HUANG Wen-long. Synthesis and antitumor and antibacterial activities of fluoroquinolone C-3 isosteres I.norfloxacin C-3 carbonylhydrazone derivatives[J]. Journal of China Pharmaceutical University, 2012, 43(4): 298-301. |
[5] | CHEN Guo-hua, REN Zhong, YANG Yang, WU Fei-hua. Synthesis and antibacterial activity of novel fourth-generation cephalosporin compounds[J]. Journal of China Pharmaceutical University, 2009, 40(5): 395-399. |
[6] | Synthesis and Antibacterial Activity of C-2 Sulfur-Bridged Tetracyclofluoroquinolone Antibacterial Agent W1[J]. Journal of China Pharmaceutical University, 2001, (4): 7-11. |
[7] | In vitro and In vivo Antibacterial Activities of Fleroxacin Injection[J]. Journal of China Pharmaceutical University, 1997, (5): 53-57. |
[8] | Synthesis and Antibacterial Activity of 6, 8-Difluoro Quinolones[J]. Journal of China Pharmaceutical University, 1993, (5): 264-268. |
[9] | Antimicrobial Activity (in Vitro) of the Constituents of Bulbus Fritillariae[J]. Journal of China Pharmaceutical University, 1992, (3): 188-189. |
[10] | Fang Jingxian, Song Yirong, Bao Yongming. ANTIBACTERIAL ACTIVITIES OF DOXYCYCLINE AND TMP IN COMBINATION[J]. Journal of China Pharmaceutical University, 1984, (3): 54-60. |