Citation: | WU Yiling, YOU Qi, WU Jie. Therapeutic effect of oral vaccine based on glutamate decarboxylase 65 on streptozotocin-induced type 1 diabetic mice[J]. Journal of China Pharmaceutical University, 2021, 52(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20210515 |
[1] |
. Front Immunol,2018,9:392.
|
[2] |
Arneth B,Arneth R,Shams M. Metabolomics of type 1 and type 2 diabetes[J]. Int J Mol Sci,2019,20(10):2467.
|
[3] |
Rolandsson O,Hampe CS,Sharp SJ,et al. Autoimmunity plays a role in the onset of diabetes after 40 years of age[J]. Diabetologia,2020,63(2):266-277.
|
[4] |
Tisch R,Yang XD,Liblau RS,et al. Administering glutamic acid decarboxylase to NOD mice prevents diabetes[J]. J Autoimmun,1994,7(6):845-850.
|
[5] |
Yamamoto T,Yamato E,Tashiro F,et al. Development of autoimmune diabetes in glutamic acid decarboxylase 65 (GAD65) knockout NOD mice[J]. Diabetologia,2004,47(2):221-224.
|
[6] |
Casas R,Dietrich F,Barcenilla H,et al. Glutamic acid decarboxylase injection into lymph nodes:beta cell function and immune responses in recent onset type 1 diabetes patients[J]. Front Immunol,2020,11:564921.
|
[7] |
Ludvigsson J. Autoantigen treatment in type 1 diabetes:unsolved questions on how to select autoantigen and administration route[J]. Int J Mol Sci,2020,21(5):1598.
|
[8] |
Wang HQ,Zhang HY,Yang J,et al. Preparation of a glutamate decarboxylase 65-related peptide fusion protein and its efficacy in the treatment of type 1 diabetes mellitus[J]. Pharm Biotechnol(药物生物技术),2009,16(4):296-301.
|
[9] |
Chen YL,Wu J,Wang JJ,et al. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice[J]. Diabetologia,2018,61(6):1384-1396.
|
[10] |
Wu J,Liu XR,Yang X,et al. Hypoglycemic effect of Lactococcus lactis vaccine containing HSP65-6P277 on streptozotocin-induced type 1 diabetic mice[J]. J China Pharm Univ(中国药科大学学报),2014,45(1):106-110.
|
[11] |
Li M,Wang Y,Sun Y,et al. Mucosal vaccines:strategies and challenges[J]. Immunol Lett,2020,217:116-125.
|
[12] |
Xu H,Hu FQ,Ying XY,et al. Preparation of insulin-loaded sodium alginate nanoparticles and its pharmacodynamics study on diabetic rats[J]. Chin Pharm J(中国药学杂志),2006,41(6):434-437.
|
[13] |
Yang JHM,Khatri L,Mickunas M,et al. Phenotypic analysis of human lymph nodes in subjects with new-onset type 1 diabetes and healthy individuals by flow cytometry[J]. Front Immunol,2019,10:2547.
|
[14] |
Abdel-Moneim A,Bakery HH,Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus[J]. Biomedecine Pharmacother,2018,101:287-292.
|
[15] |
Zheng ZH,Zheng F. A complex auxiliary:IL-17/Th17 signaling during type 1 diabetes progression[J]. Mol Immunol,2019,105:16-31.
|
[16] |
Tavira B,Barcenilla H,Wahlberg J,et al. Intralymphatic glutamic acid decarboxylase-alum administration induced Th2-like-specific immunomodulation in responder patients:a pilot clinical trial in type 1 diabetes[J]. J Diabetes Res,2018,2018:9391845.
|
[17] |
Turner MS,Isse K,Fischer DK,et al. Low TCR signal strength induces combined expansion of Th2 and regulatory T cell populations that protect mice from the development of type 1 diabetes[J]. Diabetologia,2014,57(7):1428-1436.
|
[18] |
Bellemore SM,Nikoopour E,Schwartz JA,et al. Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice[J]. Clin Exp Immunol,2015,182(3):261-269.
|
[19] |
Clark M,Kroger CJ,Ke Q,et al. The role of T cell receptor signaling in the development of type 1 diabetes[J]. Front Immunol,2020,11:615371.
|
[1] | ZHOU Yongmei, TANG Cheng, ZHANG Sifang. Isolation and identification of antitumor constituents from Trichosanthes tricuspidata[J]. Journal of China Pharmaceutical University, 2019, 50(1): 46-52. DOI: 10.11665/j.issn.1000-5048.20190106 |
[2] | YE Feng, LYU Qinglin, ZHU Wanfang, FENG Feng, ZHANG Jie. Chemical constituents from the leaves of Anisopus mannii and the melanogenesis inhibitory activities[J]. Journal of China Pharmaceutical University, 2018, 49(6): 676-681. DOI: 10.11665/j.issn.1000-5048.20180606 |
[3] | ZHOU Yongmei, SHI Xianming, MA Lei, ZHANG Sifang. Isolation and identification of Withaphysalins from Physalis minima[J]. Journal of China Pharmaceutical University, 2015, 46(1): 62-65. DOI: 10.11665/j.issn.1000-5048.20150107 |
[4] | WANG Guoyan, ZHU Jingjing, LOU Fengchang. Chemical constituents from the exopleura of Ginkgo biloba and inhibition test of total ginkgolic acids against phytopathogenic fungi[J]. Journal of China Pharmaceutical University, 2014, 45(2): 170-174. DOI: 10.11665/j.issn.1000-5048.20140207 |
[5] | YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305 |
[6] | LIU Zhi-yong, NIU Zhi-yuan, ZHENG Wei, SHEN Ping-ping. Effects of p-ERK1/2 on nitric oxide donor induced apoptosis of HepG2 cells[J]. Journal of China Pharmaceutical University, 2012, 43(6): 530-534. |
[7] | RAO Ya-kun, DING Li, YU Yong. Structural identification of two major impurities in sodium levofolinate[J]. Journal of China Pharmaceutical University, 2012, 43(4): 350-354. |
[8] | Study on the Chemical Constituents from the Leaves of Desmos chinensis Lour[J]. Journal of China Pharmaceutical University, 2003, (6): 22-24. |
[9] | Effects of E6, a Calmodulin Antagonist, on Nitric Oxide Synthase in Rat''''s Brain and [3H]-Glutamic Acid Release from Synaptosome[J]. Journal of China Pharmaceutical University, 2002, (5): 81-85. |
[10] | Advances in the Research of Nitric Oxide and Its Modulators[J]. Journal of China Pharmaceutical University, 2001, (5): 3-10. |