• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Hongting, JI Xiaoxuan, LI Jing, SUN Minjie. Application of vascularized organ-on-a-chip in simulating physiological and pathological processes[J]. Journal of China Pharmaceutical University, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302
Citation: LIU Hongting, JI Xiaoxuan, LI Jing, SUN Minjie. Application of vascularized organ-on-a-chip in simulating physiological and pathological processes[J]. Journal of China Pharmaceutical University, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302

Application of vascularized organ-on-a-chip in simulating physiological and pathological processes

More Information
  • Received Date: November 21, 2021
  • Revised Date: April 21, 2022
  • With the development of biomimetic technology, more and more in vitro models are used to simulate human physiological and pathological processes.These in vitro models can solve some scientific problems, such as studying drug effects in real-timely and visually.As an in vitro model, organ-on-a-chip provides novel means and methods for basic and applied science.The vascularized organ-on-a-chip, as a special kind of organ-on-a-chip, can better simulate the structure and function of human blood vessels.In this review, we summarized the structure and function of different vascularized organ-on-a-chip, analyzed the application of vascularized organ-on-a-chip in simulating physiological and pathological processes, and discussed the advantages and problems to be solved of vascularized organ-on-a-chip as a new in vitro model.Finally, the application of vascularized organ-on-a-chip is proposed.
  • [1]
    . Annu Rev Biomed Eng,2011,13:55-72.
    [2]
    Majesky MW. Vascular development[J]. Arterioscler Thromb Vasc Biol,2018,38(3):e17-e24.
    [3]
    Poole DC,Behnke BJ,Musch TI. The role of vascular function on exercise capacity in health and disease[J]. J Physiol,2021,599(3):889-910.
    [4]
    Alves CH,Fernandes R,Santiago AR,et al. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration[J]. Cells,2020,9(5):1217.
    [5]
    Souilhol C,Harmsen MC,Evans PC,et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res,2018,114(4):565-577.
    [6]
    Filipowska J,Tomaszewski KA,Nied?wiedzki ?,et al. The role of vasculature in bone development,regeneration and proper systemic functioning[J]. Angiogenesis,2017,20(3):291-302.
    [7]
    Shemmeri E,Vallières E. Blunt tracheobronchial trauma[J]. Thorac Surg Clin,2018,28(3):429-434.
    [8]
    Li XR,Sun XD,Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease[J]. Cell Metab,2019,30(3):414-433.
    [9]
    Bhatia SN,Ingber DE. Microfluidic organs-on-chips[J]. Nat Biotechnol,2014,32(8):760-772.
    [10]
    Sontheimer-Phelps A,Hassell BA,Ingber DE. Modelling cancer in microfluidic human organs-on-chips[J]. Nat Rev Cancer,2019,19(2):65-81.
    [11]
    Kieninger J,Weltin A,Flamm H,et al. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip[J]. Lab Chip,2018,18(9):1274-1291.
    [12]
    G?gotek A,Atalay S,Domingues P,et al. The differences in the proteome profile of cannabidiol-treated skin fibroblasts following UVA or UVB irradiation in 2D and 3D cell cultures[J]. Cells,2019,8(9):995.
    [13]
    Nugraha B,Buono MF,von Boehmer L,et al. Human cardiac organoids for disease modeling[J]. Clin Pharmacol Ther,2019,105(1):79-85.
    [14]
    van Zundert I,Fortuni B,Rocha S. From 2D to 3D cancer cell models-the enigmas of drug delivery research[J]. Nanomaterials (Basel),2020,10(11):2236.
    [15]
    Drost J,Clevers H. Organoids in cancer research[J]. Nat Rev Cancer,2018,18(7):407-418.
    [16]
    Zanoni M,Cortesi M,Zamagni A,et al. Modeling neoplastic disease with spheroids and organoids[J]. J Hematol Oncol,2020,13(1):97.
    [17]
    Robinson NB,Krieger K,Khan FM,et al. The Current state of animal models in research:a review[J]. Int J Surg,2019,72:9-13.
    [18]
    Potente M,Carmeliet P. The link between angiogenesis and endothelial metabolism[J]. Annu Rev Physiol,2017,79:43-66.
    [19]
    Brassard-Jollive N,Monnot C,Muller L,et al. In vitro 3D systems to model tumor angiogenesis and interactions with stromal cells[J]. Front Cell Dev Biol,2020,8:594903.
    [20]
    Naito H,Iba T,Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells[J]. Int Immunol,2020,32(5):295-305.
    [21]
    Azevedo Portilho N,Pelajo-Machado M. Mechanism of hematopoiesis and vasculogenesis in mouse placenta[J]. Placenta,2018,69:140-145.
    [22]
    Glembotski CC,Rosarda JD,Wiseman RL. Proteostasis and beyond:ATF6 in ischemic disease[J]. Trends Mol Med,2019,25(6):538-550.
    [23]
    Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis[J]. Curr Opin Cell Biol,2018,55:30-35.
    [24]
    Veith AP,Henderson K,Spencer A,et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev,2019,146:97-125.
    [25]
    Hamidi H,Ivaska J. Every step of the way:integrins in cancer progression and metastasis[J]. Nat Rev Cancer,2018,18(9):533-548.
    [26]
    Faubert B,Solmonson A,DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):eaaw5473.
    [27]
    Huh D,Matthews BD,Mammoto A,et al. Reconstituting organ-level lung functions on a chip[J]. Science,2010,328(5986):1662-1668.
    [28]
    Zhu YJ,Sun LY,Wang Y,et al. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath[J]. Adv Mater,2022,34(13):e2108972.
    [29]
    Huang D,Liu TT,Liao JL,et al. Reversed-engineered human alveolar lung-on-a-chip model[J]. Proc Natl Acad Sci U S A,2021,118(19):e2016146118.
    [30]
    Novak R,Ingram M,Marquez S,et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nat Biomed Eng,2020,4(4):407-420.
    [31]
    Huang DQ,Zhang XX,Fu X,et al. Liver spheroids on chips as emerging platforms for drug screening[J]. Eng Regen,2021,2:246-256.
    [32]
    Young RE,Huh DD. Organ-on-a-chip technology for the study of the female reproductive system[J]. Adv Drug Deliv Rev,2021,173:461-478.
    [33]
    Herland A,Maoz BM,Das D,et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips[J]. Nat Biomed Eng,2020,4(4):421-436.
    [34]
    Kim S,Lee H,Chung M,et al. Engineering of functional,perfusable 3D microvascular networks on a chip[J]. Lab Chip,2013,13(8):1489-1500.
    [35]
    Lee S,Kim S,Koo DJ,et al. 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine[J]. ACS Nano,2021,15(1):338-350.
    [36]
    Lee S,Chung M,Lee SR,et al. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro[J]. Biotechnol Bioeng,2020,117(3):748-762.
    [37]
    Park YC,Zhang CT,Kim S,et al. Microvessels-on-a-chip to assess targeted ultrasound-assisted drug delivery[J]. ACS Appl Mater Interfaces,2016,8(46):31541-31549.
    [38]
    Chung M,Ahn J,Son K,et al. Biomimetic model of tumor microenvironment on microfluidic platform[J]. Adv Healthc Mater,2017,6(15). doi:10.1002/adhm.201700196.
    [39]
    Oh S,Ryu H,Tahk D,et al. “Open-top” microfluidic device for in vitro three-dimensional capillary beds[J]. Lab Chip,2017,17(20):3405-3414.
    [40]
    Ahn J,Cho CS,Cho SW,et al. Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model[J]. Acta Biomater,2018,76:154-163.
    [41]
    Wang XL,Phan DTT,Sobrino A,et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels[J]. Lab Chip,2016,16(2):282-290.
    [42]
    Sobrino A,Phan DTT,Datta R,et al. 3D microtumors in vitro supported by perfused vascular networks[J]. Sci Rep,2016,6:31589.
    [43]
    van Duinen V,Zhu D,Ramakers C,et al. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform[J]. Angiogenesis,2019,22(1):157-165.
    [44]
    van Duinen V,Stam W,Borgdorff V,et al. Standardized and scalable assay to study perfused 3D angiogenic sprouting of iPSC-derived endothelial cells in vitro[J]. J Vis Exp,2019(153). doi:10.3791/59678.
    [45]
    van Duinen V,van den Heuvel A,Trietsch SJ,et al. 96 perfusable blood vessels to study vascular permeability in vitro[J]. Sci Rep,2017,7(1):18071.
    [46]
    Poussin C,Kramer B,Lanz HL,et al. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow - application in systems toxicology[J]. ALTEX,2020,37(1):47-63.
    [47]
    Zhu LY,Shao CM,Chen HX,et al. Hierarchical hydrogels with ordered micro-nano structures for cancer-on-a-chip construction[J]. Research (Wash D C),2021,2021:9845679.
    [48]
    Wang HF,Ran R,Liu Y,et al. Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation[J]. ACS Nano,2018,12(11):11600-11609.
    [49]
    Paek J,Park SE,Lu QZ,et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues[J]. ACS Nano,2019,13(7):7627-7643.
    [50]
    Nashimoto Y,Okada R,Hanada S,et al. Vascularized cancer on a chip:the effect of perfusion on growth and drug delivery of tumor spheroid[J]. Biomaterials,2020,229:119547.
    [51]
    Nashimoto Y,Hayashi T,Kunita I,et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device[J]. Integr Biol (Camb),2017,9(6):506-518.
    [52]
    Nashimoto Y,Teraoka Y,Banan Sadeghian R,et al. Perfusable vascular network with a tissue model in a microfluidic device[J]. J Vis Exp,2018(134):57242.
    [53]
    Carvalho MR,Barata D,Teixeira LM,et al. Colorectal tumor-on-a-chip system:a 3D tool for precision onco-nanomedicine[J]. Sci Adv,2019,5(5):eaaw1317.
    [54]
    Zhang BY,Radisic M. Organ-on-a-chip devices advance to market[J]. Lab Chip,2017,17(14):2395-2420.
  • Related Articles

    [1]WANG Xiniao, YAO Wenhui, PAN Zhenzhen, DONG Jieyan, LIU Shuo, DING Xuansheng. Protective effects and mechanism of icariin against vascular function in diabetic mice[J]. Journal of China Pharmaceutical University, 2022, 53(2): 215-221. DOI: 10.11665/j.issn.1000-5048.20220212
    [2]CAI Qilin, LI Wenxing, YAN Zhen, YIN Lifang. Prediction of the bioequivalence of different crystal forms of rifampicin based on physiologically based pharmacokinetic model[J]. Journal of China Pharmaceutical University, 2022, 53(2): 207-214. DOI: 10.11665/j.issn.1000-5048.20220211
    [3]WU Jianbing, HUANG Zhangjian, ZHANG Yihua. Research and reflections on the nitric oxide-donating cardio-cerebrovascular drugs[J]. Journal of China Pharmaceutical University, 2021, 52(2): 129-143. DOI: 10.11665/j.issn.1000-5048.20210201
    [4]SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103
    [5]ZHANG Haowen, CHAI Yingying, CHEN Hanyu, ZHENG Xiao, HAO Haiping, CHEN Xiaohu. Advances in the mechanism of aspirin resistance[J]. Journal of China Pharmaceutical University, 2014, 45(4): 496-503. DOI: 10.11665/j.issn.1000-5048.20140420
    [6]HE Xiaobei, LIU Xiaodong. Physiologically based pharmacokinetic model of mechanism-based inhibition of theophylline/caffeine by enoxacin/ciprofloxacin[J]. Journal of China Pharmaceutical University, 2013, 44(1): 77-84. DOI: 10.11665/j.issn.1000-5048.20130113
    [7]Effects of Cyclosporine A Liposome Gel on Experimental Psoriasis Models[J]. Journal of China Pharmaceutical University, 2002, (4): 25-30.
    [8]Yang Jinghua, Song Xiangzheng. The Markovian Model C in Pharmacokinetics[J]. Journal of China Pharmaceutical University, 1997, (1): 59-62.
    [9]PHYSIOLOGICAL MODEL AND NUMERICAL INTEGRATING AGORITHM[J]. Journal of China Pharmaceutical University, 1987, (4): 273-276.
    [10]Chen Qionghua. The Biochemistry、Physiology、Pathology and Pharmacology of Polyunsaturate Fatty Acid[J]. Journal of China Pharmaceutical University, 1982, (1): 57-66.

Catalog

    Article views (550) PDF downloads (537) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return