Citation: | LIU Hongting, JI Xiaoxuan, LI Jing, SUN Minjie. Application of vascularized organ-on-a-chip in simulating physiological and pathological processes[J]. Journal of China Pharmaceutical University, 2022, 53(3): 264-272. DOI: 10.11665/j.issn.1000-5048.20220302 |
[1] |
. Annu Rev Biomed Eng,2011,13:55-72.
|
[2] |
Majesky MW. Vascular development[J]. Arterioscler Thromb Vasc Biol,2018,38(3):e17-e24.
|
[3] |
Poole DC,Behnke BJ,Musch TI. The role of vascular function on exercise capacity in health and disease[J]. J Physiol,2021,599(3):889-910.
|
[4] |
Alves CH,Fernandes R,Santiago AR,et al. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration[J]. Cells,2020,9(5):1217.
|
[5] |
Souilhol C,Harmsen MC,Evans PC,et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res,2018,114(4):565-577.
|
[6] |
Filipowska J,Tomaszewski KA,Nied?wiedzki ?,et al. The role of vasculature in bone development,regeneration and proper systemic functioning[J]. Angiogenesis,2017,20(3):291-302.
|
[7] |
Shemmeri E,Vallières E. Blunt tracheobronchial trauma[J]. Thorac Surg Clin,2018,28(3):429-434.
|
[8] |
Li XR,Sun XD,Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease[J]. Cell Metab,2019,30(3):414-433.
|
[9] |
Bhatia SN,Ingber DE. Microfluidic organs-on-chips[J]. Nat Biotechnol,2014,32(8):760-772.
|
[10] |
Sontheimer-Phelps A,Hassell BA,Ingber DE. Modelling cancer in microfluidic human organs-on-chips[J]. Nat Rev Cancer,2019,19(2):65-81.
|
[11] |
Kieninger J,Weltin A,Flamm H,et al. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip[J]. Lab Chip,2018,18(9):1274-1291.
|
[12] |
G?gotek A,Atalay S,Domingues P,et al. The differences in the proteome profile of cannabidiol-treated skin fibroblasts following UVA or UVB irradiation in 2D and 3D cell cultures[J]. Cells,2019,8(9):995.
|
[13] |
Nugraha B,Buono MF,von Boehmer L,et al. Human cardiac organoids for disease modeling[J]. Clin Pharmacol Ther,2019,105(1):79-85.
|
[14] |
van Zundert I,Fortuni B,Rocha S. From 2D to 3D cancer cell models-the enigmas of drug delivery research[J]. Nanomaterials (Basel),2020,10(11):2236.
|
[15] |
Drost J,Clevers H. Organoids in cancer research[J]. Nat Rev Cancer,2018,18(7):407-418.
|
[16] |
Zanoni M,Cortesi M,Zamagni A,et al. Modeling neoplastic disease with spheroids and organoids[J]. J Hematol Oncol,2020,13(1):97.
|
[17] |
Robinson NB,Krieger K,Khan FM,et al. The Current state of animal models in research:a review[J]. Int J Surg,2019,72:9-13.
|
[18] |
Potente M,Carmeliet P. The link between angiogenesis and endothelial metabolism[J]. Annu Rev Physiol,2017,79:43-66.
|
[19] |
Brassard-Jollive N,Monnot C,Muller L,et al. In vitro 3D systems to model tumor angiogenesis and interactions with stromal cells[J]. Front Cell Dev Biol,2020,8:594903.
|
[20] |
Naito H,Iba T,Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells[J]. Int Immunol,2020,32(5):295-305.
|
[21] |
Azevedo Portilho N,Pelajo-Machado M. Mechanism of hematopoiesis and vasculogenesis in mouse placenta[J]. Placenta,2018,69:140-145.
|
[22] |
Glembotski CC,Rosarda JD,Wiseman RL. Proteostasis and beyond:ATF6 in ischemic disease[J]. Trends Mol Med,2019,25(6):538-550.
|
[23] |
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis[J]. Curr Opin Cell Biol,2018,55:30-35.
|
[24] |
Veith AP,Henderson K,Spencer A,et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev,2019,146:97-125.
|
[25] |
Hamidi H,Ivaska J. Every step of the way:integrins in cancer progression and metastasis[J]. Nat Rev Cancer,2018,18(9):533-548.
|
[26] |
Faubert B,Solmonson A,DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):
|
[27] |
Huh D,Matthews BD,Mammoto A,et al. Reconstituting organ-level lung functions on a chip[J]. Science,2010,328(5986):1662-1668.
|
[28] |
Zhu YJ,Sun LY,Wang Y,et al. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath[J]. Adv Mater,2022,34(13):
|
[29] |
Huang D,Liu TT,Liao JL,et al. Reversed-engineered human alveolar lung-on-a-chip model[J]. Proc Natl Acad Sci U S A,2021,118(19):
|
[30] |
Novak R,Ingram M,Marquez S,et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nat Biomed Eng,2020,4(4):407-420.
|
[31] |
Huang DQ,Zhang XX,Fu X,et al. Liver spheroids on chips as emerging platforms for drug screening[J]. Eng Regen,2021,2:246-256.
|
[32] |
Young RE,Huh DD. Organ-on-a-chip technology for the study of the female reproductive system[J]. Adv Drug Deliv Rev,2021,173:461-478.
|
[33] |
Herland A,Maoz BM,Das D,et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips[J]. Nat Biomed Eng,2020,4(4):421-436.
|
[34] |
Kim S,Lee H,Chung M,et al. Engineering of functional,perfusable 3D microvascular networks on a chip[J]. Lab Chip,2013,13(8):1489-1500.
|
[35] |
Lee S,Kim S,Koo DJ,et al. 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine[J]. ACS Nano,2021,15(1):338-350.
|
[36] |
Lee S,Chung M,Lee SR,et al. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro[J]. Biotechnol Bioeng,2020,117(3):748-762.
|
[37] |
Park YC,Zhang CT,Kim S,et al. Microvessels-on-a-chip to assess targeted ultrasound-assisted drug delivery[J]. ACS Appl Mater Interfaces,2016,8(46):31541-31549.
|
[38] |
Chung M,Ahn J,Son K,et al. Biomimetic model of tumor microenvironment on microfluidic platform[J]. Adv Healthc Mater,2017,6(15).
|
[39] |
Oh S,Ryu H,Tahk D,et al. “Open-top” microfluidic device for in vitro three-dimensional capillary beds[J]. Lab Chip,2017,17(20):3405-3414.
|
[40] |
Ahn J,Cho CS,Cho SW,et al. Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model[J]. Acta Biomater,2018,76:154-163.
|
[41] |
Wang XL,Phan DTT,Sobrino A,et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels[J]. Lab Chip,2016,16(2):282-290.
|
[42] |
Sobrino A,Phan DTT,Datta R,et al. 3D microtumors in vitro supported by perfused vascular networks[J]. Sci Rep,2016,6:31589.
|
[43] |
van Duinen V,Zhu D,Ramakers C,et al. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform[J]. Angiogenesis,2019,22(1):157-165.
|
[44] |
van Duinen V,Stam W,Borgdorff V,et al. Standardized and scalable assay to study perfused 3D angiogenic sprouting of iPSC-derived endothelial cells in vitro[J]. J Vis Exp,2019(153).
|
[45] |
van Duinen V,van den Heuvel A,Trietsch SJ,et al. 96 perfusable blood vessels to study vascular permeability in vitro[J]. Sci Rep,2017,7(1):18071.
|
[46] |
Poussin C,Kramer B,Lanz HL,et al. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow - application in systems toxicology[J]. ALTEX,2020,37(1):47-63.
|
[47] |
Zhu LY,Shao CM,Chen HX,et al. Hierarchical hydrogels with ordered micro-nano structures for cancer-on-a-chip construction[J]. Research (Wash D C),2021,2021:9845679.
|
[48] |
Wang HF,Ran R,Liu Y,et al. Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation[J]. ACS Nano,2018,12(11):11600-11609.
|
[49] |
Paek J,Park SE,Lu QZ,et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues[J]. ACS Nano,2019,13(7):7627-7643.
|
[50] |
Nashimoto Y,Okada R,Hanada S,et al. Vascularized cancer on a chip:the effect of perfusion on growth and drug delivery of tumor spheroid[J]. Biomaterials,2020,229:119547.
|
[51] |
Nashimoto Y,Hayashi T,Kunita I,et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device[J]. Integr Biol (Camb),2017,9(6):506-518.
|
[52] |
Nashimoto Y,Teraoka Y,Banan Sadeghian R,et al. Perfusable vascular network with a tissue model in a microfluidic device[J]. J Vis Exp,2018(134):57242.
|
[53] |
Carvalho MR,Barata D,Teixeira LM,et al. Colorectal tumor-on-a-chip system:a 3D tool for precision onco-nanomedicine[J]. Sci Adv,2019,5(5):
|
[54] |
Zhang BY,Radisic M. Organ-on-a-chip devices advance to market[J]. Lab Chip,2017,17(14):2395-2420.
|
[1] | WANG Xiniao, YAO Wenhui, PAN Zhenzhen, DONG Jieyan, LIU Shuo, DING Xuansheng. Protective effects and mechanism of icariin against vascular function in diabetic mice[J]. Journal of China Pharmaceutical University, 2022, 53(2): 215-221. DOI: 10.11665/j.issn.1000-5048.20220212 |
[2] | CAI Qilin, LI Wenxing, YAN Zhen, YIN Lifang. Prediction of the bioequivalence of different crystal forms of rifampicin based on physiologically based pharmacokinetic model[J]. Journal of China Pharmaceutical University, 2022, 53(2): 207-214. DOI: 10.11665/j.issn.1000-5048.20220211 |
[3] | WU Jianbing, HUANG Zhangjian, ZHANG Yihua. Research and reflections on the nitric oxide-donating cardio-cerebrovascular drugs[J]. Journal of China Pharmaceutical University, 2021, 52(2): 129-143. DOI: 10.11665/j.issn.1000-5048.20210201 |
[4] | SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103 |
[5] | ZHANG Haowen, CHAI Yingying, CHEN Hanyu, ZHENG Xiao, HAO Haiping, CHEN Xiaohu. Advances in the mechanism of aspirin resistance[J]. Journal of China Pharmaceutical University, 2014, 45(4): 496-503. DOI: 10.11665/j.issn.1000-5048.20140420 |
[6] | HE Xiaobei, LIU Xiaodong. Physiologically based pharmacokinetic model of mechanism-based inhibition of theophylline/caffeine by enoxacin/ciprofloxacin[J]. Journal of China Pharmaceutical University, 2013, 44(1): 77-84. DOI: 10.11665/j.issn.1000-5048.20130113 |
[7] | Effects of Cyclosporine A Liposome Gel on Experimental Psoriasis Models[J]. Journal of China Pharmaceutical University, 2002, (4): 25-30. |
[8] | Yang Jinghua, Song Xiangzheng. The Markovian Model C in Pharmacokinetics[J]. Journal of China Pharmaceutical University, 1997, (1): 59-62. |
[9] | PHYSIOLOGICAL MODEL AND NUMERICAL INTEGRATING AGORITHM[J]. Journal of China Pharmaceutical University, 1987, (4): 273-276. |
[10] | Chen Qionghua. The Biochemistry、Physiology、Pathology and Pharmacology of Polyunsaturate Fatty Acid[J]. Journal of China Pharmaceutical University, 1982, (1): 57-66. |