Citation: | ZHU Zhixi, ZHANG Jielin, CHEN Yijun. Recent advances in research on chelators as metallo-β-lactamase inhibitors[J]. Journal of China Pharmaceutical University, 2022, 53(4): 410-422. DOI: 10.11665/j.issn.1000-5048.20220404 |
[1] |
. Cold Spring Harb Perspect Med,2016,6(8):
|
[2] |
Lutgring JD. Carbapenem-resistant Enterobacteriaceae:an emerging bacterial threat[J]. Semin Diagn Pathol,2019,36(3):182-186.
|
[3] |
Kadri SS. Key takeaways from the US CDC's 2019 antibiotic resistance threats report for frontline providers[J]. Crit Care Med,2020,48(7):939-945.
|
[4] |
Salahuddin P,Kumar A,Khan AU. Structure,function of serine and metallo-β-lactamases and their inhibitors[J]. Curr Protein Pept Sci,2018,19(2):130-144.
|
[5] |
von Nussbaum F,Schiffer G. Aspergillomarasmine A,an inhibitor of bacterial metallo-β-lactamases conferring blaNDM and blaVIM resistance[J]. Angew Chem Int Ed Engl,2014,53(44):11696-11698.
|
[6] |
Linciano P,Cendron L,Gianquinto E,et al. Ten years with New Delhi metallo-β-lactamase-1 (NDM-1):from structural insights to inhibitor design[J]. ACS Infect Dis,2019,5(1):9-34.
|
[7] |
Yamaguchi Y,Kato K,Ichimaru Y,et al. Crystal structures of metallo-β-lactamase (IMP-1) and its D120E mutant in complexes with citrate and the inhibitory effect of the benzyl group in citrate monobenzyl ester[J]. J Med Chem,2021,64(14):10019-10026.
|
[8] |
Pemberton OA,Jaishankar P,Akhtar A,et al. Heteroaryl phosphonates as noncovalent inhibitors of both serine- and metallocarbapenemases[J]. J Med Chem,2019,62(18):8480-8496.
|
[9] |
Rivière G,Oueslati S,Gayral M,et al. NMR characterization of the influence of zinc(II) ions on the structural and dynamic behavior of the New Delhi metallo-β-lactamase-1 and on the binding with flavonols as inhibitors[J]. ACS Omega,2020,5(18):10466-10480.
|
[10] |
Tooke CL,Hinchliffe P,Bragginton EC,et al. β-lactamases and β-lactamase inhibitors in the 21st century[J]. J Mol Biol,2019,431(18):3472-3500.
|
[11] |
Bonomo RA. β-lactamases:a focus on current challenges[J]. Cold Spring Harb Perspect Med,2017,7(1):
|
[12] |
Elder DP,Kuentz M,Holm R. Antibiotic resistance:the need for a global strategy[J]. J Pharm Sci,2016,105(8):2278-2287.
|
[13] |
Bahr G,González LJ,Vila AJ. Metallo-β-lactamases in the age of multidrug resistance:from structure and mechanism to evolution,dissemination,and inhibitor design[J]. Chem Rev,2021,121(13):7957-8094.
|
[14] |
Sabath LD,Abraham EP. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569[J]. Biochem J,1966,98(1):11C-13C.
|
[15] |
Sychantha D,Rotondo CM,Tehrani KHME,et al. Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn2+[J]. J Biol Chem,2021,297(2):100918.
|
[16] |
Chen AY,Thomas PW,Stewart AC,et al. Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1[J]. J Med Chem,2017,60(17):7267-7283.
|
[17] |
Thomas DJ,Chisolm J
|
[18] |
Aoki N,Ishii Y,Tateda K,et al. Efficacy of calcium-EDTA as an inhibitor for metallo-β-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia[J]. Antimicrob Agents Chemother,2010,54(11):4582-4588.
|
[19] |
Yoshizumi A,Ishii Y,Livermore DM,et al. Efficacies of calcium-EDTA in combination with imipenem in a murine model of sepsis caused by Escherichia coli with NDM-1 β-lactamase[J]. J Infect Chemother,2013,19(5):992-995.
|
[20] |
Spohn M,Wohlleben W,Stegmann E. Elucidation of the zinc-dependent regulation in Amycolatopsis japonicum enabled the identification of the ethylenediamine-disuccinate ([S,S]-EDDS) genes[J]. Environ Microbiol,2016,18(4):1249-1263.
|
[21] |
Proschak A,Kramer J,Proschak E,et al. Bacterial zincophore [S,S]-ethylenediamine-N,N'-disuccinic acid is an effective inhibitor of MBLs[J]. J Antimicrob Chemother,2018,73(2):425-430.
|
[22] |
Tehrani KHME,Fu HG,Brüchle NC,et al. Aminocarboxylic acids related to aspergillomarasmine A (AMA) and ethylenediamine-N,N'-disuccinic acid (EDDS) are strong zinc-binders and inhibitors of the metallo-beta-lactamase NDM-1[J]. Chem Commun,2020,56(20):3047-3049.
|
[23] |
Haenni AL,Robert M,Vetter W,et al. Structure chimique des aspergillomarasmines A et B[J]. Helv Chim Acta,1965,48(4):729-750.
|
[24] |
Mikami Y,Suzuki T. Novel microbial inhibitors of angiotensin-converting enzyme,aspergillomarasmines A and B[J]. Agric Biol Chem,1983,47(11):2693-2695.
|
[25] |
King AM,Reid-Yu SA,Wang WL,et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance[J]. Nature,2014,510(7506):503-506.
|
[26] |
Rotondo CM,Sychantha D,Koteva K,et al. Suppression of β-lactam resistance by aspergillomarasmine A is influenced by both the metallo-β-lactamase target and the antibiotic partner[J]. Antimicrob Agents Chemother,2020,64(4):e01386- e01419.
|
[27] |
Bergstrom A,Katko A,Adkins Z,et al. Probing the interaction of aspergillomarasmine A with metallo-β-lactamases NDM-1,VIM-2,and IMP-7[J]. ACS Infect Dis,2018,4(2):135-145.
|
[28] |
Liao DH,Yang SQ,Wang JY,et al. Total synthesis and structural reassignment of aspergillomarasmine A[J]. Angew Chem Int Ed Engl,2016,55(13):4291-4295.
|
[29] |
Koteva K,King AM,Capretta A,et al. Total synthesis and activity of the metallo-β-lactamase inhibitor aspergillomarasmine A[J]. Angew Chem Int Ed Engl,2016,55(6):2210-2212.
|
[30] |
Zhang J,Wang SS,Bai YJ,et al. Total syntheses of natural metallophores staphylopine and aspergillomarasmine A[J]. J Org Chem,2017,82(24):13643-13648.
|
[31] |
Albu SA,Koteva K,King AM,et al. Total synthesis of aspergillomarasmine A and related compounds:a sulfamidate approach enables exploration of structure-activity relationships[J]. Angew Chem Int Ed Engl,2016,55(42):13259-13262.
|
[32] |
Fu HG,Zhang JL,Saifuddin M,et al. Chemoenzymatic asymmetric synthesis of the metallo-β-lactamase inhibitor aspergillomarasmine A and related aminocarboxylic acids[J]. Nat Catal,2018,1(3):186-191.
|
[33] |
Guo QQ,Wu DS,Gao L,et al. Identification of the AMA synthase from the aspergillomarasmine A biosynthesis and evaluation of its biocatalytic potential[J]. ACS Catal,2020,10(11):6291-6298.
|
[34] |
Zhang J,Wang SS,Wei Q,et al. Synthesis and biological evaluation of aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance[J]. Bioorg Med Chem,2017,25(19):5133-5141.
|
[35] |
Somboro AM,Tiwari D,Bester LA,et al. NOTA:a potent metallo-β-actamase inhibitor[J]. J Antimicrob Chemother,2015,70(5):1594-1596.
|
[36] |
Zhang E,Wang MM,Huang SC,et al. NOTA analogue:a first dithiocarbamate inhibitor of metallo-β-lactamases[J]. Bioorg Med Chem Lett,2018,28(2):214-221.
|
[37] |
Li XS,Gui R,Li J,et al. Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii[J]. ACS Appl Mater Interfaces,2021,13(26):30434-30457.
|
[38] |
Evans GW,Johnson PE. Characterization and quantitation of a zinc-binding ligand in human milk[J]. Pediatr Res,1980,14(7):876-880.
|
[39] |
Horsfall LE,Garau G,Liénard BMR,et al. Competitive inhibitors of the CphA metallo-β-lactamase from Aeromonas hydrophila[J]. Antimicrob Agents Chemother,2007,51(6):2136-2142.
|
[40] |
Niu XD,Wang XY,Gao YW,et al. Insight into the inhibition mechanism and structure-activity relationship of 2,6-dipicolinic acid and its analogue to New Delhi metallo-β-lactamase-1[J]. Mol Simulat,2019,45(6):525-531.
|
[41] |
Hinchliffe P,Tanner CA,Krismanich AP,et al. Structural and kinetic studies of the potent inhibition of metallo-β-lactamases by 6-phosphonomethylpyridine-2-carboxylates[J]. Biochemistry,2018,57(12):1880-1892.
|
[42] |
Chen AY,Thomas PW,Cheng ZS,et al. Investigation of dipicolinic acid isosteres for the inhibition of metallo-β-lactamases[J]. ChemMedChem,2019,14(13):1271-1282.
|
[43] |
Boros E,Ferreira CL,Cawthray JF,et al. Acyclic chelate with ideal properties for 68Ga PET imaging agent elaboration[J]. J Am Chem Soc,2010,132(44):15726-15733.
|
[44] |
Shi XF,Wang MM,Huang SC,et al. H2depda:an acyclic adjuvant potentiates meropenem activity in vitro against metallo-β-lactamase-producing enterobacterales[J]. Eur J Med Chem,2019,167:367-376.
|
[45] |
Cui DY,Yang Y,Bai MM,et al. Systematic research of H2dedpa derivatives as potent inhibitors of New Delhi metallo-β-lactamase-1[J]. Bioorg Chem,2020,101:103965.
|
[46] |
Chen FF,Bai MM,Liu WT,et al. H2dpa derivatives containing pentadentate ligands:an acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing enterobacterales[J]. Eur J Med Chem,2021,224:113702.
|
[47] |
Azumah R,Dutta J,Somboro AM,et al. In vitro evaluation of metal chelators as potential metallo‐β‐lactamase inhibitors[J]. J Appl Microbiol,2016,120(4):860-867.
|
[48] |
Sosibo SC,Somboro AM,Amoako DG,et al. Impact of pyridyl moieties on the inhibitory properties of prominent acyclic metal chelators against metallo-β-lactamase-producing Enterobacteriaceae:investigating the molecular basis of acyclic metal chelators' activity[J]. Microb Drug Resist,2019,25(3):439-449.
|
[49] |
Schnaars C,Kildahl-Andersen G,Prandina A,et al. Synthesis and preclinical evaluation of TPA-based zinc chelators as metallo-β-lactamase inhibitors[J]. ACS Infect Dis,2018,4(9):1407-1422.
|
[50] |
Wang MM,Chu WC,Yang Y,et al. Dithiocarbamates:efficient metallo-β-lactamase inhibitors with good antibacterial activity when combined with meropenem[J]. Bioorg Med Chem Lett,2018,28(21):3436-3440.
|
[51] |
King DT,Strynadka NCJ. Targeting metallo-β-lactamase enzymes in antibiotic resistance[J]. Future Med Chem,2013,5(11):1243-1263.
|
[52] |
Panlilio H,Lam AK,Heydarian N,et al. Dual-function potentiation by PEG-BPEI restores activity of carbapenems and penicillins against carbapenem-resistant Enterobacteriaceae[J]. ACS Infect Dis,2021,7(6):1657-1665.
|
[53] |
Shin WS,Nguyen ME,Bergstrom A,et al. Fragment-based screening and hit‐based substructure search:rapid discovery of 8‐hydroxyquinoline‐7‐carboxylic acid as a low‐cytotoxic,nanomolar metallo β‐lactamase inhibitor[J]. Chem Biol Drug Des,2021,98(4):481-492.
|
[54] |
Falconer SB,Reid-Yu SA,King AM,et al. Zinc chelation by a small-molecule adjuvant potentiates meropenem activity in vivo against NDM-1-producing Klebsiella pneumoniae[J]. ACS Infect Dis,2015,1(11):533-543.
|
[55] |
Ishii Y,Eto M,Mano Y,et al. In vitro potentiation of carbapenems with ME1071,a novel metallo-β-lactamase inhibitor,against metallo-β-lactamase-producing Pseudomonas aeruginosa clinical isolates[J]. Antimicrob Agents Chemother,2010,54(9):3625-3629.
|
[56] |
Livermore DM,Mushtaq S,Morinaka A,et al. Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae and Acinetobacter spp. with carbapenemases,including NDM enzymes[J]. J Antimicrob Chemother,2013,68(1):153-158.
|
[57] |
Legru A,Verdirosa F,Hernandez JF,et al. 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity[J]. Eur J Med Chem,2021,226:113873.
|
[58] |
Gavara L,Verdirosa F,Legru A,et al. 4-(N-alkyl-and-acyl-amino)-1,2,4-triazole-3-thione analogs as metallo-β-lactamase inhibitors:impact of 4-linker on potency and spectrum of inhibition[J]. Biomolecules,2020,10(8):1094.
|
[59] |
Gavara L,Legru A,Verdirosa F,et al. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors[J]. Bioorg Chem,2021,113:105024.
|
[60] |
Shaaban MM,Ragab HM,Akaji K,et al. Design,synthesis,biological evaluation and in silico studies of certain aryl sulfonyl hydrazones conjugated with 1,3-diaryl pyrazoles as potent metallo-β-lactamase inhibitors[J]. Bioorg Chem,2020,105:104386.
|
[61] |
Prandina A,Radix S,le Borgne M,et al. Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo-β-lactamase inhibitors[J]. Tetrahedron,2019,75(11):1525-1540.
|
[1] | YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403 |
[2] | SI Lianghui, MA Hui, ZHOU Jinpei, ZHANG Huibin. Advances in antidiabetic small molecule ABHD6 inhibitors[J]. Journal of China Pharmaceutical University, 2017, 48(2): 125-134. DOI: 10.11665/j.issn.1000-5048.20170201 |
[3] | WU Shiwei, ZHANG Hui, LI Qianbin, HU Gaoyun. Advances in thioredoxin reductase and its inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 511-520. DOI: 10.11665/j.issn.1000-5048.20160502 |
[4] | XIN Minhang, ZHANG Sanqi. Advances in PI3Kδ selective inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 503-510. DOI: 10.11665/j.issn.1000-5048.20160501 |
[5] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[6] | LIU Kejun, ZHANG Zhimin, RAN Ting, CHEN Hongli, LU Tao, CHEN Yadong. Advances in BET bromodomain protein inhibitors[J]. Journal of China Pharmaceutical University, 2015, 46(3): 264-271. DOI: 10.11665/j.issn.1000-5048.20150302 |
[7] | LI Tonghui, GUO Hao, LU Tao, WANG Yue, LU Shuai, TANG Weifang. Advances in the research of FLT3 inhibitors for acute myeloid leukemia[J]. Journal of China Pharmaceutical University, 2015, 46(2): 153-161. DOI: 10.11665/j.issn.1000-5048.20150203 |
[8] | LI Chunhong, DU Hongjin, WEN Xiao′an, SUN Hongbin. Advances in inhibitors of MDM2 and MDM4[J]. Journal of China Pharmaceutical University, 2015, 46(1): 1-15. DOI: 10.11665/j.issn.1000-5048.20150101 |
[9] | Advances in the research of factor Xa inhibitors[J]. Journal of China Pharmaceutical University, 2010, 41(2): 104-111. |
[10] | Advances in Selective COX-2 Inhibitors[J]. Journal of China Pharmaceutical University, 2003, (3): 1-6. |