Citation: | WU Yaqi, LI Meng, XING Haonan, CHEN Daquan, ZHENG Aiping. Research progress of nasal mucosal immunization vaccine against COVID-19[J]. Journal of China Pharmaceutical University, 2022, 53(6): 643-650. DOI: 10.11665/j.issn.1000-5048.20220602 |
[1] |
. Am J Prev Med,2022,63(6):1062-1063.
|
[2] |
Primorac D,Vrdoljak K,Brlek P,et al. Adaptive immune responses and immunity to SARS-CoV-2[J]. Front Immunol,2022,13:848582.
|
[3] |
Tang XL,Wu CC,Li X,et al. On the origin and continuing evolution of SARS-CoV-2[J]. Natl Sci Rev,2020,7(6):1012-1023.
|
[4] |
Kang SS,Yang M,Hong ZS,et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites[J]. Acta Pharm Sin B,2020,10(7):1228-1238.
|
[5] |
Letko M,Marzi A,Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses[J]. Nat Microbiol,2020,5(4):562-569.
|
[6] |
Wu CR,Liu Y,Yang YY,et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods[J]. Acta Pharm Sin B,2020,10(5):766-788.
|
[7] |
Jackson CB,Farzan M,Chen B,et al. Mechanisms of SARS-CoV-2 entry into cells[J].Nat Rev Mol Cell Biol,2022,23(1):3-20.
|
[8] |
HouYJ,Okuda K,Edwards CE,et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract[J]. Cell,2020,182(2):429-446.e14.
|
[9] |
Takabayashi T,Yoshida K,Imoto Y,et al. Regulation of the expression of SARS-CoV-2 receptor angiotensin-converting enzyme 2 in nasal mucosa[J]. Am J Rhinol Allergy,2022,36(1):115-122.
|
[10] |
Nocini R,Henry BM,Mattiuzzi C,et al. Improving nasal protection for preventing SARS-CoV-2 infection[J]. Biomedicines,2022,10(11):2966.
|
[11] |
McGhee JR,Mestecky J,Dertzbaugh MT,et al. The mucosal immune system:from fundamental concepts to vaccine development[J]. Vaccine,1992,10(2):75-88.
|
[12] |
Ryan EJ,Daly LM,Mills KH. Immunomodulators and delivery systems for vaccination by mucosal routes[J]. Trends Biotechnol,2001,19(8):293-304.
|
[13] |
Davis SS. Nasal vaccines[J]. Adv Drug Deliv Rev,2001,51(1/2/3):21-42.
|
[14] |
Woodrow KA,Bennett KM,Lo DD. Mucosal vaccine design and delivery[J]. Annu Rev Biomed Eng,2012,14:17-46.
|
[15] |
Focosi D,Maggi F,Casadevall A. Mucosal vaccines,sterilizing immunity,and the future of SARS-CoV-2 virulence[J]. Viruses,2022,14(2):187.
|
[16] |
Zaman M,Chandrudu S,Toth I. Strategies for intranasal delivery of vaccines[J]. Drug Deliv Transl Res,2013,3(1):100-109.
|
[17] |
Bernasconi V,Norling K,Bally M,et al. Mucosal vaccine development based on liposome technology[J]. J Immunol Res,2016,2016:5482087.
|
[18] |
Tiboni M,Casettari L,Illum L. Nasal vaccination against SARS-CoV-2:synergistic or alternative to intramuscular vaccines[J]? Int J Pharm,2021,603:120686.
|
[19] |
Zainutdinov SS,Sivolobova GF,Loktev VB,et al. Mucosal immunity and vaccines against viral infections[J]. VoprVirusol,2022,66(6):399-408.
|
[20] |
Cyranoski D. Profile of a killer:the complex biology powering the coronavirus pandemic[J]. Nature,2020,581(7806):22-26.
|
[21] |
Ahn JH,Kim J,Hong SP,et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19[J]. J Clin Invest,2021,131(13):
|
[22] |
Hassan AO,Kafai NM,Dmitriev IP,et al. A single-dose intranasal ChAdvaccine protects upper and lower respiratory tracts against SARS-CoV-2[J]. Cell,2020,183(1):169-184.e13.
|
[23] |
Tang J,Cai L,Xu CF,et al. Nanotechnologies in delivery of DNA and mRNA vaccines to the nasal and pulmonary mucosa[J]. Nanomaterials (Basel),2022,12(2):226.
|
[24] |
Ingolotti M,Kawalekar O,Shedlock DJ,et al. DNA vaccines for targeting bacterial infections[J]. Expert Rev Vaccines,2010,9(7):747-763.
|
[25] |
Xu YY,Yuen PW,Lam JKW. Intranasal DNA vaccine for protection against respiratory infectious diseases:the delivery perspectives[J]. Pharmaceutics,2014,6(3):378-415.
|
[26] |
Mallapaty S,Callaway E. What scientists do and don't know about the Oxford-AstraZeneca COVID vaccine[J]. Nature,2021,592(7852):15-17.
|
[27] |
Sheridan C. First COVID-19 DNA vaccine approved,others in hot pursuit[J]. Nat Biotechnol,2021,39(12):1479-1482.
|
[28] |
Mallapaty S. India's DNA COVID vaccine is a world first - more are coming[J]. Nature,2021,597(7875):161-162.
|
[29] |
University of Eastern Finland.University of Eastern Finland scientists are developing nasal vaccine against COVID-19[EB/OL].(
|
[30] |
Boroumand H,Badie F,Mazaheri S,et al. Chitosan-based nanoparticles against viral infections[J]. Front Cell Infect Microbiol,2021,11:643953.
|
[31] |
Mura P,Maestrelli F,Cirri M,et al. Multiple roles of chitosan in mucosal drug delivery:an updated review[J]. Mar Drugs,2022,20(5):335.
|
[32] |
Gong X,Gao Y,Shu J,et al. Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines[J]. Vaccines (Basel),2022,10(11):1906.
|
[33] |
Kumar US,Afjei R,Ferrara K,et al. Gold-nanostar-chitosan-mediated delivery of SARS-CoV-2 DNA vaccine for respiratory mucosal immunization:development and proof-of-principle[J]. ACS Nano,2021,15(11):17582-17601.
|
[34] |
Brito LA,Kommareddy S,Maione D,et al. Self-amplifying mRNA vaccines[J]. Adv Genet,2015,89:179-233.
|
[35] |
Vogel AB,Kanevsky I,Che Y,et al. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates[J]. bioRxiv,2020.
|
[36] |
Tang JY,Zeng C,Cox TM,et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination[J]. Sci Immunol,2022,7(76):
|
[37] |
Amyris,Inc.Amyris achieves promising in-vivo results for intranasal delivery of RNA/NLC Vaccine[EB/OL].[
|
[38] |
Rollier CS,Reyes-Sandoval A,Cottingham MG,et al. Viral vectors as vaccine platforms:deployment in sight[J]. Curr Opin Immunol,2011,23(3):377-382.
|
[39] |
Ohtsuka J,Fukumura M,Furuyama W,et al. A versatile platform technology for recombinant vaccines using non-propagative human parainfluenza virus type 2 vector[J]. Sci Rep,2019,9(1):12901.
|
[40] |
Ohtsuka J,Imai M,Fukumura M,et al. Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2[J]. iScience,2021,24(12):103379.
|
[41] |
Park JG,Oladunni FS,Rohaim MA,et al. Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2[J]. iScience,2021,24(9):102941.
|
[42] |
Qin X,Li S,Li X,et al. Development of an Adeno-Associated Virus-Vectored SARS-CoV-2 Vaccine and Its Immunogenicity in Mice[J]. Front Cell Infect Microbiol,2022,12:802147.
|
[43] |
TWJrDubensky,Kanne DB,Leong ML. Rationale,progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants[J]. Ther Adv Vaccines,2013,1(4):131-143.
|
[44] |
An XY,Martinez-Paniagua M,Rezvan A,et al. Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2[J]. iScience,2021,24(9):103037.
|
[45] |
Du YY,Xu YH,Feng J,et al. Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse[J]. Vaccine,2021,39(16):2280-2287.
|
[46] |
Graham BS. Rapid COVID-19 vaccine development[J]. Science,2020,368(6494):945-946.
|
[47] |
Alu AQ,Chen L,Lei H,et al. Intranasal COVID-19 vaccines:from bench to bed[J]. EBioMedicine,2022,76:103841.
|
[48] |
IndexNature. Inhalable vaccine in trials[EB/OL].[
|
[49] |
Halperin SA,Ye L,MacKinnon-Cameron D,et al.Final efficacy analysis,interim safety analysis,and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older:an international,multicentre,randomised,double-blinded,placebo-controlled phase 3 trial[J].Lancet,2022,399(10321):237-248.
|
[50] |
Bo XZ.Wantai Biology:Nasal spray influenza virus vector COVID-19 vaccine is included in emergency use[EB/OL].
|
[1] | SHI Min, YONG Qin, HE Yingna, HUANG Shiqin, ZHAO Xuan, YU Xian. Construction and in vivo evaluation of a thermosensitive hydrogel system loading with Pseudomonas aeruginosa DNA vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207 |
[2] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[3] | WANG Rui, WANG Yongmei, CAI Mingjun, KE Xuejia, WU Yue, CHONG Jun, CAO Rongyue. Pharmacological effects of anti-melanoma DC vaccine sensitized by fusion proteins of G3G6 and HST1[J]. Journal of China Pharmaceutical University, 2019, 50(2): 238-245. DOI: 10.11665/j.issn.1000-5048.20190216 |
[4] | HAN Xiu, QI Xiaole, WU Zhenghong. Advances in self-assemblied DNA nanocages as drug delivery systems[J]. Journal of China Pharmaceutical University, 2017, 48(6): 663-669. DOI: 10.11665/j.issn.1000-5048.20170605 |
[5] | ZHANG Zhiqing, WANG Fang, ZHOU Ting, ZHANG Guodong, WANG Xiufeng, LI Yunze. A DNA polyaptamer system as a targeted antitumor drug delivery[J]. Journal of China Pharmaceutical University, 2015, 46(4). DOI: 10.11665/j.issn.1000-5048.20150408 |
[6] | Formula optimization and transfection efficiency of polyethyleneimine/DNA complexes[J]. Journal of China Pharmaceutical University, 2010, 41(1): 40-44. |
[7] | Study on the Flavonoids from Lonicera confusa DC.[J]. Journal of China Pharmaceutical University, 2004, (4): 9-12. |
[8] | Applications of Au Nanoparticles Labeling Method in DNA-detection and the Technology of Genechip[J]. Journal of China Pharmaceutical University, 2003, (2): 88-93. |
[9] | The Isoquinolones from Menispermum dauricum DC.[J]. Journal of China Pharmaceutical University, 2001, (2): 16-17. |
[10] | Ptotoplast Transformation of Staphylococcal DNA[J]. Journal of China Pharmaceutical University, 1992, (4): 239-242. |
1. |
石敏,雍琴,何颖娜,黄仕琴,赵轩,余娴. 载铜绿假单胞菌DNA疫苗温敏水凝胶系统的构建及体内评价. 中国药科大学学报. 2021(02): 186-194 .
![]() | |
2. |
雍琴,岳瀚勋,石敏,黄仕琴,赵轩,余娴. pH响应性PTEN/PLGA-(HE)_(10)-MAP纳米粒的构建及体外评价. 中国药科大学学报. 2021(03): 301-310 .
![]() | |
3. |
冯旸,徐霄,莫然. 淋巴靶向药物递送系统在抗肿瘤转移治疗中的研究进展. 中国药科大学学报. 2020(04): 425-432 .
![]() |