• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WANG Ronghua, ZHENG Zhihui, ZHANG Yuqian, MIN Rui, ZHU Ying, ZHANG Pinghu. Progress of research on immune escape mechanism of coronavirus[J]. Journal of China Pharmaceutical University, 2021, 52(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20210101
Citation: WANG Ronghua, ZHENG Zhihui, ZHANG Yuqian, MIN Rui, ZHU Ying, ZHANG Pinghu. Progress of research on immune escape mechanism of coronavirus[J]. Journal of China Pharmaceutical University, 2021, 52(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20210101

Progress of research on immune escape mechanism of coronavirus

Funds: This study was supported by the Advanced Innovative Talents Project of Yangzhou University (No.20180613) and the Open Project from Jiangsu Provincial Key Laboratory of Human Zoonosis (No.R1707)
More Information
  • Received Date: December 28, 2020
  • Revised Date: January 15, 2021
  • Coronavirus is an important pathogen of humans and animals. Among them, the novel coronavirus disease (COVID-19) breaking out in 2019 has brought a fatal threat to human health. The host"s innate immune response is the host"s first line of defense against pathogen invasion, but an excessive immune response can also aggravate viral infection and pathological damage. The immune escape of coronavirus is a critical pathogenic mechanism causing death. This work mainly reviews the pathogenic mechanism of coronavirus immune escape from several aspects such as host immunosensor, interferon, cytokine and coronavirus antagonizing host immune response, which provide a theoretical reference for the development of anti-coronavirus drugs.
  • [1]
    . J Virol, 2013, 87(17): 9754-9767.
    [2]
    Othman H, Bouslama Z, Brandenburg JT, et al. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism[J]. Biochem Biophys Res Commun, 2020, 527(3): 702-708.
    [3]
    Shang J, Wan YS, Luo CM, et al. Cell entry mechanisms of SARS-CoV-2[J]. Proc Natl Acad Sci U S A, 2020, 117(21): 11727-11734.
    [4]
    Lan J, Ge JW, Yu JF, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215-220.
    [5]
    Li K, Wohlford-Lenane C, Perlman S, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4[J]. J Infect Dis, 2016, 213(5): 712-722.
    [6]
    Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8.
    [7]
    Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis[J]. Nat Rev Microbiol, 2009, 7(6): 439-450.
    [8]
    Du LY, He YX, Zhou YS, et al. The spike protein of SARS-CoV: a target for vaccine and therapeutic development[J]. Nat Rev Microbiol, 2009, 7(3): 226-236.
    [9]
    Günther C, Josenhans C, Wehkamp J. Crosstalk between microbiota, pathogens and the innate immune responses[J]. Int J Med Microbiol, 2016, 306(5): 257-265.
    [10]
    Rathinam VA, Fitzgerald KA. Cytosolic surveillance and antiviral immunity[J]. Curr Opin Virol, 2011, 1(6): 455-462.
    [11]
    Wong LY, Lui PY, Jin DY. A molecular arms race between host innate antiviral response and emerging human coronaviruses[J]. Virol Sin, 2016, 31(1): 12-23.
    [12]
    Durán A, Alvarez-Mon M, Valero N. Role of toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) in viral infections[J]. Invest Clin, 2014, 55(1): 61-81.
    [13]
    Gay NJ, Symmons MF, Gangloff M, et al. Assembly and localization of Toll-like receptor signalling complexes[J]. Nat Rev Immunol, 2014, 14(8): 546-558.
    [14]
    Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway[J]. Rev Med Virol, 2011, 21(2): 67-77.
    [15]
    Mazaleuskaya L, Veltrop R, Ikpeze N, et al. Protective role of Toll-like Receptor 3-induced type I interferon in murine coronavirus infection of macrophages[J]. Viruses, 2012, 4(5): 901-923.
    [16]
    Jiang FG, Ramanathan A, Miller MT, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I[J]. Nature, 2011, 479(7373): 423-427.
    [17]
    Loo YM, Gale MJr. Immune signaling by RIG-I-like receptors[J]. Immunity, 2011, 34(5): 680-692.
    [18]
    Ford E, Thanos D. The transcriptional code of human IFN-beta gene expression[J]. Biochim Biophys Acta, 2010, 1799(3/4): 328-336.
    [19]
    Li JF, Liu Y, Zhang XM. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5[J]. J Virol, 2010, 84(13): 6472-6482.
    [20]
    Ma F, Li B, Liu SY, et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS[J]. J Immunol, 2015, 194(4): 1545-1554.
    [21]
    Chu H, Chan JF, Wang YX, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19[J]. Clin Infect Dis, 2020, 71(6): 1400-1409.
    [22]
    Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice[J]. Cell Host Microbe, 2016, 19(2): 181-193.
    [23]
    Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
    [24]
    de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses[J]. Nat Rev Microbiol, 2016, 14(8): 523-534.
    [25]
    Lo BK, Yu M, Zloty D, et al. CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas[J]. Am J Pathol, 2010, 176(5): 2435-2446.
    [26]
    Xu Z, Shi L, Wang YJ, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4): 420-422.
    [27]
    Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology[J]. Semin Immunopathol, 2017, 39(5): 529-539.
    [28]
    Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes[J]. J Biol Chem, 2014, 289(37): 25783-25796.
    [29]
    Chen Y, Cai H, Pan JA, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase[J]. Proc Natl Acad Sci U S A, 2009, 106(9): 3484-3489.
    [30]
    Daffis S, Szretter KJ, Schriewer J, et al. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members[J]. Nature, 2010, 468(7322): 452-456.
    [31]
    Channappanavar R, Fehr AR, Zheng J, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes[J]. J Clin Invest, 2019, 129(9): 3625-3639.
    [32]
    Kindler E, Thiel V. SARS-CoV and IFN: too little, too late[J]. Cell Host Microbe, 2016, 19(2): 139-141.
    [33]
    Kindler E, Jónsdóttir HR, Muth D, et al. Efficient replication of the novel human Betacoronavirus EMC on primary human epithelium highlights its zoonotic potential[J]. mBio, 2013, 4(1): e00611-e00612.
    [34]
    Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon Alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study[J]. Lancet Infect Dis, 2014, 14(11): 1090-1095.
    [35]
    Lokugamage KG, Narayanan K, Nakagawa K, et al. Middle east respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin[J]. J Virol, 2015, 89(21): 10970-10981.
    [36]
    Kamitani W, Huang C, Narayanan K, et al. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein[J]. Nat Struct Mol Biol, 2009, 16(11): 1134-1140.
    [37]
    Clementz MA, Chen ZB, Banach BS, et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases[J]. J Virol, 2010, 84(9): 4619-4629.
    [38]
    Frieman M, Ratia K, Johnston RE, et al. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling[J]. J Virol, 2009, 83(13): 6689-6705.
    [39]
    Alfuwaires M, Altaher A, Kandeel M. Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3[J]. Biol Pharm Bull, 2017, 40(3): 345-351.
    [40]
    Liu G, Lee J H, Parker Z M, et al. ISG15-dependent activation of the RNA sensor MDA5 and its antagonism by the SARS-CoV-2 papain-like protease[J].bioRxiv,2020,doi:10.1101/2020.10.26.356048.
    [41]
    Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex[J]. J Biol Chem, 2009, 284(24): 16202-16209.
    [42]
    Yang Y, Zhang L, Geng HY, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists[J]. Protein Cell, 2013, 4(12): 951-961.
    [43]
    Siu KL, Chan CP, Kok KH, et al. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain[J]. Cell Mol Immunol, 2014, 11(2): 141-149.
    [44]
    Freundt EC, Yu L, Park E, et al. Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein[J]. J Virol, 2009, 83(13): 6631-6640.
    [45]
    de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group[J]. J Virol, 2013, 87(14): 7790-7792.
    [46]
    Niemeyer D, Zillinger T, Muth D, et al. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist[J]. J Virol, 2013, 87(22): 12489-12495.
    [47]
    Siu KL, Yeung ML, Kok KH, et al. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response[J]. J Virol, 2014, 88(9): 4866-4876.
  • Related Articles

    [1]QIU Jiwan, KONG Yong, CHEN Wei, XU Lei, CAO Chunjie, CHEN Tao, WU Yiliang. Generation and characterization of humanized monoclonal antibody against human IFNAR1[J]. Journal of China Pharmaceutical University, 2024, 55(3): 404-411. DOI: 10.11665/j.issn.1000-5048.2024031401
    [2]YANG Qian, CHEN Nannan, YOU Qidong, XU Xiaoli. Research progress on stimulator of interferon genes (STING) agonists[J]. Journal of China Pharmaceutical University, 2022, 53(3): 253-263. DOI: 10.11665/j.issn.1000-5048.20220301
    [3]JI Liyang, HAO Jing, WANG Guocheng, XIE Weijia. Research progress on stimulator of interferon genes agonists for cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2020, 51(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20200101
    [4]YANG Wei, WANG Shaoda, QIN Shujie, WU Gang, HE Shuying. Effects and molecular mechanism of benserazide hydrochloride on LPS-induced inflammation in human umbilical vein endothelial cells[J]. Journal of China Pharmaceutical University, 2018, 49(5): 624-631. DOI: 10.11665/j.issn.1000-5048.20180516
    [5]SHANG Ying, ZHAO Liyuan, LU Jingkun. Relationship between inflammatory cytokines and gastric cancer[J]. Journal of China Pharmaceutical University, 2015, 46(1): 123-128. DOI: 10.11665/j.issn.1000-5048.20150119
    [6]ZHOU Xingchun, LI Yingxin, HONG Wen, WANG Ying, YE Boping. Effect of Maculosin on fibrotic gene expression in lung fibroblasts[J]. Journal of China Pharmaceutical University, 2014, 45(4): 491-495. DOI: 10.11665/j.issn.1000-5048.20140419
    [7]LI Pei, WANG Da-wei, LIU Xiao-dong. Tumor necrosis factor-αand its receptors in rheumatoid arthritis[J]. Journal of China Pharmaceutical University, 2011, 42(3): 276-283.
    [8]Study on Isolation andPurification of Recombinant Human Interferon[J]. Journal of China Pharmaceutical University, 2001, (2): 72-74.
    [9]ChemicalModification of Activated Polyethylene Glycol to Recombined Human Interferon[J]. Journal of China Pharmaceutical University, 2000, (1): 76-79.
    [10]Preparation of Immobilized Antibody Membrane of Acoustic Immunosensor for Determination of Insulin[J]. Journal of China Pharmaceutical University, 1997, (1): 52-55.
  • Cited by

    Periodical cited type(10)

    1. 张慧敏,梁舒,姜中毅,王彪,张慧,蒋小娟,董茂星,成瑶,姚进喜,于德山. 甘肃省人群新型冠状病毒血清流行病学调查分析. 中国病毒病杂志. 2024(02): 182-188 .
    2. 孟凡茹,闫炎,魏语泽,张昊,赵伟,裴志花,王开,胡桂学. 猪δ冠状病毒对先天免疫信号转导通路的影响. 经济动物学报. 2023(01): 74-78 .
    3. 沈姗,聂瑞芳,侯宁,董亮,张锦涛,唐琳,张薇,杨双双,许珂,季翔,张建宁,王光海,鲁德玕,王春亭. 抗呼吸道RNA病毒的小分子药物应用专家意见. 中国合理用药探索. 2023(05): 1-14 .
    4. 王霖,杜映荣,马志强,李杰,张淑琼,汤晓青,瞿春燕,段亚茹,李才信. 新型冠状病毒疫苗接种6个月后血清IgM和IgG抗体水平的分析. 上海预防医学. 2022(02): 126-129 .
    5. 郑志慧,王琨,卫海琳,王雯蕾,吴建雄,王荣花,苏勤,李玉环,张评浒. 复方银花解毒颗粒抗冠状病毒药效作用及初步机制研究. 药学学报. 2022(06): 1808-1815 .
    6. 汤艳芬,王宇,关春爽,谢汝明,薛天娇,刘刚,陈奇,赵雯,刘岩岩,刘菁,陈融佥,陈丽,任爱民,靳桂芳. 接种新型冠状病毒灭活疫苗后感染新型冠状病毒的老年患者的临床特征分析. 实用心脑肺血管病杂志. 2022(07): 7-12 .
    7. 王春晖,杨逸露,曹碧红,车玉传,吴显劲. IL-35和IL-37在新型冠状病毒肺炎患者血浆中水平及临床意义. 检验医学与临床. 2022(20): 2812-2815 .
    8. 邬林枫,王立林,刘衡,梁婉欣,李冬冬,张更伟,段炼,曾劲峰,张国良. 新冠病毒灭活疫苗接种者抗体动态演变规律分析. 中国国境卫生检疫杂志. 2022(05): 392-395 .
    9. 陈沐,周圆明,彭辉,巫培连,莫晓能. 接种灭活疫苗后的境外输入性新冠肺炎患者临床特征. 中国感染控制杂志. 2021(07): 586-591 .
    10. 陈沐,韩俊彦,张德荣,李世闻,莫晓能. 接种新型冠状病毒灭活疫苗(Vero细胞)后感染COVID-19病例的临床特征及抗体情况. 中国热带医学. 2021(10): 985-989 .

    Other cited types(3)

Catalog

    Article views (1119) PDF downloads (1338) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return