Citation: | YAN Yingchao, ZENG Chen, CHEN Yadong. Virtual screening of potential ATR kinase inhibitors based on machine learning and molecular docking[J]. Journal of China Pharmaceutical University, 2023, 54(3): 323-332. DOI: 10.11665/j.issn.1000-5048.2023022802 |
[1] |
Bradbury A, Hall S, Curtin N, et al. Targeting ATR as Cancer Therapy: a new era for synthetic lethality and synergistic combinations [J]? Pharmacol Ther, 2020, 207: 107450.
|
[2] |
Zimmermann A, Dahmen H, Grombacher T, et al. Abstract 2588: M1774, a novel potent and selective ATR inhibitor, shows antitumor effects as monotherapy and in combination[J]. Cancer Res, 2022, 82(
|
[3] |
Yap Timothy A, Tolcher Anthony W, Ruth PE, et al. A first-in-human phase I study of ATR inhibitor M1774 in patients with solid tumors[J]. J Clin Oncol, 2021, 39(
|
[4] |
Zenke FT, Zimmermann A, Dahmen H, et al. Antitumor activity of M4344, a potent and selective ATR inhibitor, in monotherapy and combination therapy [J]. Cancer Res, 2019, 79(
|
[5] |
Fokas E, Prevo R, Pollard JR, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation[J]. Cell Death Dis, 2012, 3(12):
|
[6] |
Knegtel R, Charrier JD, Durrant S, et al. Rational design of 5-(4-(isopropylsulfonyl) phenyl)-3-(3-(4-((methylamino) methyl) phenyl) isoxazol-5-yl) pyrazin-2-amine (VX-970, M6620): optimization of intra- and intermolecular polar interactions of a new ataxia telangiectasia mutated and Rad3-related (ATR) kinase inhibitor[J]. J Med Chem, 2019, 62(11): 5547-5561.
|
[7] |
Foote KM, Nissink JWM, McGuire T, et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent[J]. J Med Chem, 2018, 61(22): 9889-9907.
|
[8] |
Foote KM, Lau A. Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer[J]. Future Med Chem, 2015, 7(7): 873-891.
|
[9] |
Luecking U, Lefranc J, Wengner A, et al. Abstract 983: identification of potent, highly selective and orally available ATR inhibitor BAY 1895344 with favorable PK properties and promising efficacy in monotherapy and combination in preclinical tumor models[J]. Cancer Res, 2017, 77(
|
[10] |
Wengner AM, Siemeister G, Lücking U, et al. The novel ATR inhibitor BAY 1895344 is efficacious as monotherapy and combined with DNA damage-inducing or repair-compromising therapies in preclinical cancer models[J]. Mol Cancer Ther, 2020, 19(1): 26-38.
|
[11] |
Roulston A, Zimmermann M, Papp R, et al. RP-3500: a novel, potent, and selective ATR inhibitor that is effective in preclinical models as a monotherapy and in combination with PARP inhibitors[J]. Mol Cancer Ther, 2022, 21(2): 245-256.
|
[12] |
Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46(1/2/3): 3-26.
|
[13] |
Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates[J]. J Med Chem, 2002, 45(12): 2615-2623.
|
[14] |
Taylor RD, MacCoss M, Lawson AD. Rings in drugs: miniperspective [J]. J Med Chem, 2014, 57(14): 5845-5859.
|
[15] |
Friedman JH. Greedy function approximation: a gradient boosting machine[J]. Ann Statist, 2001, 29(5): 1189-1232.
|
[16] |
Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system[C]//
|
[17] |
Dorogush AV, Ershov V, Gulin A. CatBoost: gradient boosting with categorical features support[J]. arXiv, 2018: 1810.11363.
|
[18] |
Tropsha A, Gramatica P, Gombar V. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models[J]. QSAR Comb Sci, 2003, 22(1): 69-77.
|
[19] |
Kar S, Roy K. First report on development of quantitative interspecies structure—carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines[J]. Chemosphere, 2012, 87(4): 339-355.
|
[20] |
Ojha P, Mitra I, Das R, et al. Further exploring rm2 metrics for validation of QSPR models[J]. Chemom Intell Lab Syst, 2011, 107: 194-205.
|
[21] |
Roy PP, Leonard JT, Roy K. Exploring the impact of size of training sets for the development of predictive QSAR models[J]. Chemom Intell Lab Syst, 2008, 90(1): 31-42.
|
[22] |
Pratim Roy P, Paul S, Mitra I, et al. On two novel parameters for validation of predictive QSAR models[J]. Molecules, 2009, 14(5): 1660-1701.
|
[23] |
Mitra I, Roy PP, Kar S, et al. On further application of r as a metric for validation of QSAR models[J]. J Chemom, 2010, 24(1): 22-33.
|
[24] |
Brian Houston J, Carlile DJ. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices[J]. Drug Metab Rev, 1997, 29(4): 891-922.
|
[25] |
Tang HD, Hussain A, Leal M, et al. Interspecies prediction of human drug clearance based on scaling data from one or two animal species[J]. Drug Metab Dispos, 2007, 35(10): 1886-1893.
|
[26] |
Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy[J]. J Med Chem, 2004, 47(7): 1739-1749.
|
[27] |
Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes[J]. J Med Chem, 2006, 49(21): 6177-6196.
|
[28] |
Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery[J]. Curr Top Med Chem, 2008, 8(18): 1555-1572.
|
[29] |
Vass M, Kooistra AJ, Ritschel T, et al. Molecular interaction fingerprint approaches for GPCR drug discovery[J]. Curr Opin Pharmacol, 2016, 30: 59-68.
|
[30] |
Kozakov D, Grove LE, Hall DR, et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins[J]. Nat Protoc, 2015, 10(5): 733-755.
|
[31] |
Bemis GW, Murcko MA. The properties of known drugs. 1. molecular frameworks[J]. J Med Chem, 1996, 39(15): 2887-2893.
|
[32] |
Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al. Molecular sets (MOSES): a benchmarking platform for molecular generation models[J]. Front Pharmacol, 2020, 11: 565644.
|
[33] |
Fearn T. Probabilistic principal component analysis[J]. NIR News, 2014, 25(3): 23.
|
[34] |
Lu YP, Knapp M, Crawford K, et al. Rationally designed PI3Kα mutants to mimic ATR and their use to understand binding specificity of ATR inhibitors[J]. J Mol Biol, 2017, 429(11): 1684-1704.
|
[1] | TANG Linfang, ZHANG Ziqiang, SU Rina, HE Shuwang, YAO Jing. Advances in taste-masking technology of oral paediatric medicine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 135-141. DOI: 10.11665/j.issn.1000-5048.20170202 |
[2] | DENG Yan-ping, XIAO Yan-yu, PING Qi-neng, GU Xiao-zhen, BAO Quan-ying. Combined system of sinomenine hydrochloride sustained-release pellets[J]. Journal of China Pharmaceutical University, 2009, 40(3): 222-226. |
[3] | Preparation of Turbutaline Sulphate Pulsatile Controlled-release Pellets[J]. Journal of China Pharmaceutical University, 2004, (4): 17-20. |
[4] | Studies on Famotidine Pulsatile Controlled-Release Capsules[J]. Journal of China Pharmaceutical University, 1997, (3): 25-29. |
[6] | Study on the Controlled-Release System of Propranolol Hydrochloride[J]. Journal of China Pharmaceutical University, 1994, (2): 83-87. |
[7] | Studies on Isosorbide- 5- Mononitrate Controlled Release Tablets[J]. Journal of China Pharmaceutical University, 1993, (6): 327-330. |
[8] | Studies on Controlled Release Tablet of Piroxicam[J]. Journal of China Pharmaceutical University, 1990, (4): 201-204. |
[9] | DEVELOPMENT OF CONTROLLED-RELEASE CHLORPHENIRAMINE PELLETS[J]. Journal of China Pharmaceutical University, 1985, (1): 28-37. |
[10] | Li Hanyun, Li Fengwen, Liu Guojie, Chen Shuguang, Cheng Yun. PREDICTION OF SHELF-LIFE OF CONTROLLED- RELEASE OPHTHALMIC FILM OF PILOCARPINE[J]. Journal of China Pharmaceutical University, 1984, (3): 1-5. |
1. |
杨婧雯,陈芊,单云龙,刘嘉莉,尉宁,王婧,王广基,周芳. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展. 中国药科大学学报. 2024(01): 103-114 .
![]() | |
2. |
张强,罗曦,韩丽颖,王帅,包永睿,李天娇,孟宪生. 基于代谢组学研究hUC-MSCs-Exos联合复方木鸡颗粒抑制人肝癌细胞SMMC-7721增殖机制. 中华中医药杂志. 2024(10): 5481-5487 .
![]() |