Citation: | RONG Danqi, WANG Qian, TANG Li, SI Wanyu, ZHAO Hongping. Research progress of feature-based deep learning for predicting compound-protein interaction[J]. Journal of China Pharmaceutical University, 2023, 54(3): 305-313. DOI: 10.11665/j.issn.1000-5048.2023040304 |
[1] |
Fu MY, Zhu YY, Wu CY, et al. Prediction of plasma protein binding rate based on machine learning[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(6): 699-706.
|
[2] |
Zhong FS. Studies on drug-target interactions based on graph neural network(基于图神经网络的药物—靶标作用研究)[D]. Shanghai: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 2022.
|
[3] |
Kim S, Chen J, Cheng TJ, et al. PubChem in 2021: new data content and improved web interfaces[J]. Nucleic Acids Res, 2021, 49(D1): D1388-D1395.
|
[4] |
Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity database: an update[J]. Nucleic Acids Res, 2014, 42(Database issue): D1083-D1090.
|
[5] |
Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data[J]. Nucleic Acids Res, 2016, 44(D1): D380-D384.
|
[6] |
Liu TQ, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities[J]. Nucleic Acids Res, 2007, 35(Database issue): D198-D201.
|
[7] |
Su MY, Yang QF, Du Y, et al. Comparative assessment of scoring functions: the CASF-2016 update[J]. J Chem Inf Model, 2019, 59(2): 895-913.
|
[8] |
Mysinger MM, Carchia M, Irwin JJ, et al. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking[J]. J Med Chem, 2012, 55(14): 6582-6594.
|
[9] |
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082.
|
[10] |
Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity[J]. Nat Biotechnol, 2011, 29(11): 1046-1051.
|
[11] |
Tang J, Szwajda A, Shakyawar S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis[J]. J Chem Inf Model, 2014, 54(3): 735-743.
|
[12] |
Du PF, Wang X, Xu C, et al. PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou''s pseudo-amino acid compositions[J]. Anal Biochem, 2012, 425(2): 117-119.
|
[13] |
Chen Z, Zhou Y, Song JN, et al. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties[J]. Biochim Biophys Acta, 2013, 1834(8): 1461-1467.
|
[14] |
Wan XZ, Wu XL, Wang DY, et al. An inductive graph neural network model for compound-protein interaction prediction based on a homogeneous graph[J]. Brief Bioinform, 2022, 23(3):
|
[15] |
Chen Y, Wu H, Ge WH, et al. Research on entity relation extraction of Chinese adverse drug reaction reports based on deep learning method[J]. J China Pharm Univ (中国药科大学学报), 2019, 50(6): 753-759.
|
[16] |
?ztürk H, ?zgür A, OzkirimLi E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): i821-i829.
|
[17] |
?ztürk H, OzkirimLi E, ?zgür A. WideDTA: prediction of drug-target binding affinity[J].arXiv,2019:1902.
|
[18] |
Yang JB, Cai YY, Zhao KR, et al. Concepts and applications of chemical fingerprint for hit and lead screening[J]. Drug Discov Today, 2022, 27(11): 103356.
|
[19] |
Lee I, Keum J, Nam H. DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences[J]. PLoS Comput Biol, 2019, 15(6):
|
[20] |
Rifaioglu AS, Cetin Atalay R, Cansen Kahraman D, et al. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery[J]. Bioinformatics, 2021, 37(5): 693-704.
|
[21] |
Wang SD, Du ZZ, Ding M, et al. LDCNN-DTI: a novel light deep convolutional neural network for drug-target interaction predictions[C]//
|
[22] |
Wang KL, Zhou RY, Li YH, et al. DeepDTAF: a deep learning method to predict protein-ligand binding affinity[J]. Brief Bioinform, 2021, 22(5):
|
[23] |
Wang S, Jiang MJ, Zhang SG, et al. MCN-CPI: multiscale convolutional network for compound-protein interaction prediction[J]. Biomolecules, 2021, 11(8): 1119.
|
[24] |
Lin X. DeepGS: Deep Representation Learning of graphs and sequences for drug-target binding affinity prediction[J]. arXiv,2020: 2003.13902v2.
|
[25] |
Wei LS, Long WT, Wei LY. MDL-CPI: multi-view deep learning model for compound-protein interaction prediction[J]. Methods, 2022, 204: 418-427.
|
[26] |
Nguyen T, Le H, Quinn TP, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147.
|
[27] |
Chen S, Sun Z, Lin LH, et al. To improve protein sequence profile prediction through image captioning on pairwise residue distance map[J]. J Chem Inf Model, 2020, 60(1): 391-399.
|
[28] |
Wang S, Sun SQ, Li Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS Comput Biol, 2017, 13(1):
|
[29] |
Jiang MJ, Li Z, Zhang SG, et al. Drug-target affinity prediction using graph neural network and contact maps[J]. RSC Adv, 2020, 10(35): 20701-20712.
|
[30] |
Michel M, Menéndez Hurtado D, Elofsson A. PconsC4: fast, accurate and hassle-free contact predictions[J]. Bioinformatics, 2019, 35(15): 2677-2679.
|
[31] |
Guo BJ, Zheng HY, Jiang HH, et al. Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy[J]. Brief Bioinform, 2023, 24(2):
|
[32] |
Li SY, Wan FP, Shu HT, et al. MONN: a multi-objective neural network for predicting compound-protein interactions and affinities[J]. Cell Syst, 2020, 10(4): 308-322.e11.
|
[33] |
Yang ZD, Zhong WH, Zhao L, et al. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction[J]. Chem Sci, 2022, 13(3): 816-833.
|
[34] |
Gao KY, Fokoue A, Luo H, et al. Interpretable drug target prediction using deep neural representation[C]//
|
[35] |
Zhao Q, Xiao F, Yang M, et al. AttentionDTA: prediction of drug-target binding affinity using attention model[C]//
|
[36] |
Chen LF, Tan XQ, Wang DY, et al. TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments[J]. Bioinformatics, 2020, 36(16): 4406-4414.
|
[37] |
Nguyen NQ, Jang G, Kim H, et al. Perceiver CPI: a nested cross-attention network for compound-protein interaction prediction[J]. Bioinformatics, 2023, 39(1):
|
[38] |
Huang KX, Xiao C, Glass LM, et al. MolTrans: molecular Interaction Transformer for drug-target interaction prediction[J]. Bioinformatics, 2021, 37(6): 830-836.
|
[39] |
Wang J, Dokholyan NV. Yuel: improving the generalizability of structure-free compound-protein interaction prediction[J]. J Chem Inf Model, 2022, 62(3): 463-471.
|
[40] |
Bai PZ, Miljkovi? F, John B, et al. Interpretable bilinear attention network with domain adaptation improves drug-target prediction[J]. Nat Mach Intell, 2023, 5(2): 126-136.
|
[41] |
Zhao QC, Yang MY, Cheng ZJ, et al. Biomedical data and deep learning computational models for predicting compound-protein relations[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(4): 2092-2110.
|
[42] |
Wang SD, Du ZZ, Ding M, et al. KG-DTI: a knowledge graph based deep learning method for drug-target interaction predictions and Alzheimer''s disease drug repositions[J]. Appl Intell, 2022, 52(1): 846-857.
|
[43] |
Li YF, Sun C, Wei JM, et al. Drug-Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information[J]. Bioinformatics, 2022, 38(22): 5073-5080.
|
[44] |
Ma WJ, Zhang SG, Li Z, et al. Predicting drug-target affinity by learning protein knowledge from biological networks[J]. IEEE J Biomed Health Inform, 2023, 27(4): 2128-2137.
|
[45] |
Wu F, Jin ST, Jiang YH, et al. Pre-training of equivariant graph matching networks with conformation flexibility for drug binding[J]. Adv Sci, 2022, 9(33):
|
[46] |
Wan FP, Zhu Y, Hu HL, et al. DeepCPI: a deep learning-based framework for large-scale in silico drug screening[J]. Genomics Proteomics Bioinformatics, 2019, 17(5): 478-495.
|
[47] |
Nguyen TM, Nguyen T, Tran T. Mitigating cold-start problems in drug-target affinity prediction with interaction knowledge transferring[J]. Brief Bioinform, 2022, 23(4):
|
[1] | TANG Linfang, ZHANG Ziqiang, SU Rina, HE Shuwang, YAO Jing. Advances in taste-masking technology of oral paediatric medicine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 135-141. DOI: 10.11665/j.issn.1000-5048.20170202 |
[2] | DENG Yan-ping, XIAO Yan-yu, PING Qi-neng, GU Xiao-zhen, BAO Quan-ying. Combined system of sinomenine hydrochloride sustained-release pellets[J]. Journal of China Pharmaceutical University, 2009, 40(3): 222-226. |
[3] | Preparation of Turbutaline Sulphate Pulsatile Controlled-release Pellets[J]. Journal of China Pharmaceutical University, 2004, (4): 17-20. |
[4] | Studies on Famotidine Pulsatile Controlled-Release Capsules[J]. Journal of China Pharmaceutical University, 1997, (3): 25-29. |
[6] | Study on the Controlled-Release System of Propranolol Hydrochloride[J]. Journal of China Pharmaceutical University, 1994, (2): 83-87. |
[7] | Studies on Isosorbide- 5- Mononitrate Controlled Release Tablets[J]. Journal of China Pharmaceutical University, 1993, (6): 327-330. |
[8] | Studies on Controlled Release Tablet of Piroxicam[J]. Journal of China Pharmaceutical University, 1990, (4): 201-204. |
[9] | DEVELOPMENT OF CONTROLLED-RELEASE CHLORPHENIRAMINE PELLETS[J]. Journal of China Pharmaceutical University, 1985, (1): 28-37. |
[10] | Li Hanyun, Li Fengwen, Liu Guojie, Chen Shuguang, Cheng Yun. PREDICTION OF SHELF-LIFE OF CONTROLLED- RELEASE OPHTHALMIC FILM OF PILOCARPINE[J]. Journal of China Pharmaceutical University, 1984, (3): 1-5. |
1. |
杨婧雯,陈芊,单云龙,刘嘉莉,尉宁,王婧,王广基,周芳. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展. 中国药科大学学报. 2024(01): 103-114 .
![]() | |
2. |
张强,罗曦,韩丽颖,王帅,包永睿,李天娇,孟宪生. 基于代谢组学研究hUC-MSCs-Exos联合复方木鸡颗粒抑制人肝癌细胞SMMC-7721增殖机制. 中华中医药杂志. 2024(10): 5481-5487 .
![]() |