Citation: | ZHANG Yalin, YAN Li, JU Fengyu, WANG Wenhui, YU Ye. Research progress of palmitoylation in non-alcoholic fatty liver disease and related liver diseases[J]. Journal of China Pharmaceutical University, 2023, 54(5): 536-543. DOI: 10.11665/j.issn.1000-5048.2023040602 |
[1] |
Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
|
[2] |
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904.
|
[3] |
Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies[J]. Clin Gastroenterol Hepatol, 2015, 13(4): 643-654.e1-9;quize39-40.
|
[4] |
Yuan HW, Shyy JYJ, Martins-Green M. Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1[J]. J Hepatol, 2009, 51(3): 535-547.
|
[5] |
Juanola O, Martínez-López S, Francés R, et al. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors[J]. Int J Environ Res Public Health, 2021, 18(10): 5227.
|
[6] |
Zhou F, Zhou JH, Wang WX, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133.
|
[7] |
Du T, Chen J, Shen X. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(5): 537-544.
|
[8] |
Meroni M, Longo M, Rustichelli A, et al. Nutrition and genetics in NAFLD: the perfect binomium[J]. Int J Mol Sci, 2020, 21(8): 2986.
|
[9] |
Gosis BS, Wada S, Thorsheim C, et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1[J]. Science, 2022, 376(6590):
|
[10] |
Khan RS, Bril F, Cusi K, et al. Modulation of insulin resistance in nonalcoholic fatty liver disease[J]. Hepatology, 2019, 70(2): 711-724.
|
[11] |
Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
|
[12] |
Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39(1): 26-42.
|
[13] |
Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease[J]. J Hepatol, 2019, 70(6): 1278-1291.
|
[14] |
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis[J]. Gastroenterology, 2020, 158(7): 1913-1928.
|
[15] |
Kumar S, Duan QH, Wu RX, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113869.
|
[16] |
Zhang CY, Yang M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22(14): 7571.
|
[17] |
Svegliati-Baroni G, Pierantonelli I, Torquato P, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309.
|
[18] |
Pepinsky RB, Zeng C, Wen D, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog[J]. J Biol Chem, 1998, 273(22): 14037-14045.
|
[19] |
Hofmann K. A superfamily of membrane-bound O-acyltransfe-rases with implications for Wnt signaling[J]. Trends Biochem Sci, 2000, 25(3): 111-112.
|
[20] |
Stix R, Lee CJ, Faraldo-Gómez JD, et al. Structure and mechanism of DHHC protein acyltransferases[J]. J Mol Biol, 2020, 432(18): 4983-4998.
|
[21] |
González Montoro A, Quiroga R, Valdez Taubas J. Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1[J]. Biochem J, 2013, 454(3): 427-435.
|
[22] |
Jiang H, Zhang XY, Chen X, et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies[J]. Chem Rev, 2018, 118(3): 919-988.
|
[23] |
Masumoto N, Lanyon-Hogg T, Rodgers UR, et al. Membrane bound O-acyltransferases and their inhibitors[J]. Biochem Soc Trans, 2015, 43(2): 246-252.
|
[24] |
Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology[J]. Trends Biochem Sci, 2011, 36(5): 245-253.
|
[25] |
Rana MS, Lee CJ, Banerjee A. The molecular mechanism of DHHC protein acyltransferases[J]. Biochem Soc Trans, 2019, 47(1): 157-167.
|
[26] |
Gao XX, Hannoush RN. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine[J]. Nat Chem Biol, 2014, 10(1): 61-68.
|
[27] |
Jin JY, Zhi XL, Wang XH, et al. Protein palmitoylation and its pathophysiological relevance[J]. J Cell Physiol, 2021, 236(5): 3220-3233.
|
[28] |
Yao H, Lan J, Li CS, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours[J]. Nat Biomed Eng, 2019, 3(4): 306-317.
|
[29] |
Busquets-Hernández C, Triola G. Palmitoylation as a key regulator of ras localization and function[J]. Front Mol Biosci, 2021, 8: 659861.
|
[30] |
Shahinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes[J]. Biochemistry, 1995, 34(11): 3813-3822.
|
[31] |
Rocks O, Peyker A, Kahms M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms[J]. Science, 2005, 307(5716): 1746-1752.
|
[32] |
Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer’s disease[J]. Biol Psychiatry, 2021, 89(8): 745-756.
|
[33] |
Dai GC. Neuronal KCNQ2/3 channels are recruited to lipid raft microdomains by palmitoylation of BACE1[J]. J Gen Physiol, 2022, 154(4):
|
[34] |
Song J, Yuan CM, Li WJ, et al. APP palmitoylation is involved in the increase in Aβ1-42 induced by aluminum[J]. Brain Res, 2022, 1774: 147709.
|
[35] |
Andrew RJ, Fernandez CG, Stanley M, et al. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease[J]. Proc Natl Acad Sci U S A, 2017, 114(45): E9665-E9674.
|
[36] |
Valdez-Taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation[J]. EMBO J, 2005, 24(14): 2524-2532.
|
[37] |
Yang EP, Shen J. The roles and functions of Paneth cells in Crohn’s disease: a critical review[J]. Cell Prolif, 2021, 54(1):
|
[38] |
de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease[J]. Expert Opin Ther Targets, 2017, 21(12): 1123-1139.
|
[39] |
Lu Y, Zheng YP, Coyaud é, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing[J]. Science, 2019, 366(6464): 460-467.
|
[40] |
Karunakaran U, Elumalai S, Moon JS, et al. CD36 signal transduction in metabolic diseases: novel insights and therapeutic targeting[J]. Cells, 2021, 10(7): 1833.
|
[41] |
Shu HY, Peng YZ, Hang WJ, et al. The role of CD36 in cardiovascular disease[J]. Cardiovasc Res, 2022, 118(1): 115-129.
|
[42] |
Zhao L, Zhang C, Luo XX, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis[J]. J Hepatol, 2018, 69(3): 705-717.
|
[43] |
Zeng S, Wu F, Chen MY, et al. Inhibition of fatty acid translocase (FAT/CD36) palmitoylation enhances hepatic fatty acid β-oxidation by increasing its localization to mitochondria and interaction with long-chain acyl-CoA synthetase 1[J]. Antioxid Redox Signal, 2022, 36(16/17/18): 1081-1100.
|
[44] |
Yang S, Jia LJ, Xiang JQ, et al. KLF10 promotes nonalcoholic steatohepatitis progression through transcriptional activation of zDHHC7[J]. EMBO Rep, 2022, 23(6):
|
[45] |
You MY, Wu F, Gao ML, et al. Selenoprotein K contributes to CD36 subcellular trafficking in hepatocytes by accelerating nascent COPII vesicle formation and aggravates hepatic steatosis[J]. Redox Biol, 2022, 57: 102500.
|
[46] |
Meiler S, Baumer Y, Huang Z, et al. Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis[J]. J Leukoc Biol, 2013, 93(5): 771-780.
|
[47] |
Wang J, Hao JW, Wang X, et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane[J]. Cell Rep, 2019, 26(1): 209-221.e5.
|
[48] |
Chu HY, Du C, Yang Y, et al. MC-LR aggravates liver lipid metabolism disorders in obese mice fed a high-fat diet via PI3K/AKT/mTOR/SREBP1 signaling pathway[J]. Toxins, 2022, 14(12): 833.
|
[49] |
Tan XY, Sun Y, Chen L, et al. Caffeine ameliorates AKT-driven nonalcoholic steatohepatitis by suppressing De novo lipogenesis and MyD88 palmitoylation[J]. J Agric Food Chem, 2022, 70(20): 6108-6122.
|
[50] |
Leavens KF, Easton RM, Shulman GI, et al. Akt2 is required for hepatic lipid accumulation in models of insulin resistance[J]. Cell Metab, 2009, 10(5): 405-418.
|
[51] |
Blaustein M, Piegari E, Martínez Calejman C, et al. Akt is S-palmitoylated: a new layer of regulation for Akt[J]. Front Cell Dev Biol, 2021, 9: 626404.
|
[52] |
Xiong WF, Sun KY, Zhu Y, et al. Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt[J]. Cell Death Dis, 2021, 12(10): 934.
|
[53] |
Wang LL, Jia ZD, Wang BC, et al. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway[J]. Turk J Gastroenterol, 2020, 31(12): 902-909.
|
[54] |
Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol, 2019, 15(9): 907-916.
|
[55] |
Resh MD. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: roles in signalling and disease[J]. Open Biol, 2021, 11(3): 200414.
|
[56] |
Guy CD, Suzuki A, Zdanowicz M, et al. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease[J]. Hepatology, 2012, 55(6): 1711-1721.
|
[57] |
Sircana A, Paschetta E, Saba F, et al. Recent insight into the role of fibrosis in nonalcoholic steatohepatitis-related hepatocellular carcinoma[J]. Int J Mol Sci, 2019, 20(7): 1745.
|
[58] |
Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease[J]. Crit Rev Biochem Mol Biol, 2018, 53(3): 264-278.
|
[59] |
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
|
[60] |
Chong LW, Tsai CL, Yang KC, et al. Targeting protein palmitoylation decreases palmitate-induced sphere formation of human liver cancer cells[J]. Mol Med Rep, 2020, 22(2): 939-947.
|
[61] |
Chong LW, Chou RH, Liao CC, et al. Saturated fatty acid induces cancer stem cell-like properties in human hepatoma cells[J]. Cell Mol Biol, 2015, 61(6): 85-91.
|
[62] |
Davda D, El Azzouny MA, Tom CT, et al. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate[J]. ACS Chem Biol, 2013, 8(9): 1912-1917.
|
[1] | YAN Li, JU Fengyu, SHEN Xin, YU Ye, WANG Wenhui. Research progress of acetylation in the pathogenesis of MASLD[J]. Journal of China Pharmaceutical University, 2025, 56(1): 31-39. DOI: 10.11665/j.issn.1000-5048.2024030103 |
[2] | SUN Liting, ZHANG Weiguo, TONG Yue. Research progress on targeted protein S-palmitoylation modification in T cell immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(1): 45-52. DOI: 10.11665/j.issn.1000-5048.2023112903 |
[3] | ZHANG Yuting, WANG Anhui, YANG Jinni, LIN Jiachun, TIAN Yuan, DONG Haijuan, ZHANG Zunjian, SONG Rui. Mechanisms of cholesterol metabolism imbalance in a PA-induced non-alcoholic fatty liver disease cell model[J]. Journal of China Pharmaceutical University, 2023, 54(4): 490-500. DOI: 10.11665/j.issn.1000-5048.2023032401 |
[4] | WANG Yanmei, YANG Lei, XIN Xiaofei, YIN Lifang. Combination therapy and drug delivery strategies for treatment of non-alcoholic fatty liver disease[J]. Journal of China Pharmaceutical University, 2022, 53(4): 423-432. DOI: 10.11665/j.issn.1000-5048.20220405 |
[5] | ZHAN Kangning, QUAN Xu, HUANG Zhangjian, ZHAO Liwen. Research progress of protein arginine methyltransferase 5 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(3): 371-378. DOI: 10.11665/j.issn.1000-5048.20210315 |
[6] | HAN Lei, ZHANG Xiaomeng, QUAN Xu, LEI Yonghua, QIAN Hai. Research progress of apoptosis signal regulating kinases-1 and its inhibitors in non-alcoholic steatohepatitis[J]. Journal of China Pharmaceutical University, 2019, 50(2): 135-142. DOI: 10.11665/j.issn.1000-5048.20190202 |
[7] | DU Te, CHEN Jing, SHEN Xu. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. Journal of China Pharmaceutical University, 2018, 49(5): 537-544. DOI: 10.11665/j.issn.1000-5048.20180504 |
[8] | JIN Yue, WU Xuri, CHEN Yijun. Applications of glycosyltransferases in the improvement of druggability of natural products[J]. Journal of China Pharmaceutical University, 2017, 48(5): 529-535. DOI: 10.11665/j.issn.1000-5048.20170504 |
[9] | XIE Yuan, WANG Hong, FENG Dong, HAO Haiping, WANG Guangji. Influence of curcumin on the pharmacokinetics of lovastatin in rats with fatty liver disease[J]. Journal of China Pharmaceutical University, 2013, 44(6): 543-547. DOI: 10.11665/j.issn.1000-5048.20130611 |
[10] | Effect of Tea Polysaccharide on Lecithin-Cholesterol Acyltransferase[J]. Journal of China Pharmaceutical University, 1993, (2): 122-124. |
1. |
刘后春,周傲,陈洪波,彭先文,梅书棋,吴俊静. 蛋白翻译后修饰在PRRSV感染中的作用机制. 中国畜牧杂志. 2024(08): 13-20 .
![]() |