• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Yalin, YAN Li, JU Fengyu, WANG Wenhui, YU Ye. Research progress of palmitoylation in non-alcoholic fatty liver disease and related liver diseases[J]. Journal of China Pharmaceutical University, 2023, 54(5): 536-543. DOI: 10.11665/j.issn.1000-5048.2023040602
Citation: ZHANG Yalin, YAN Li, JU Fengyu, WANG Wenhui, YU Ye. Research progress of palmitoylation in non-alcoholic fatty liver disease and related liver diseases[J]. Journal of China Pharmaceutical University, 2023, 54(5): 536-543. DOI: 10.11665/j.issn.1000-5048.2023040602

Research progress of palmitoylation in non-alcoholic fatty liver disease and related liver diseases

Funds: This study was supported by the National Natural Science Foundation of China (No.81902480)
More Information
  • Received Date: April 05, 2023
  • Revised Date: October 16, 2023
  • Non-alcoholic fatty liver disease (NAFLD) has become a major public health hazard threatening human health worldwide.Yet, due to its complex pathogenesis, new drug development is difficult, with still insufficient clinical medication.Palmitoylation is a universal posttranslational modification of proteins catalyzed by palmitoyltransferase, affecting their stability, membrane localization and function.Recent studies have shown that palmitoylation is closely associated with NAFLD.This review summarizes the mechanisms of palmitoylation in NAFLD and analyzes the expression levels of the palmitoyltransferase family in liver tissues of NAFLD patients from GEO database, aiming to provide important clues to explore new mechanisms for NAFLD.
  • [1]
    Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
    [2]
    Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904.
    [3]
    Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies[J]. Clin Gastroenterol Hepatol, 2015, 13(4): 643-654.e1-9;quize39-40.
    [4]
    Yuan HW, Shyy JYJ, Martins-Green M. Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1[J]. J Hepatol, 2009, 51(3): 535-547.
    [5]
    Juanola O, Martínez-López S, Francés R, et al. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors[J]. Int J Environ Res Public Health, 2021, 18(10): 5227.
    [6]
    Zhou F, Zhou JH, Wang WX, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133.
    [7]
    Du T, Chen J, Shen X. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(5): 537-544.
    [8]
    Meroni M, Longo M, Rustichelli A, et al. Nutrition and genetics in NAFLD: the perfect binomium[J]. Int J Mol Sci, 2020, 21(8): 2986.
    [9]
    Gosis BS, Wada S, Thorsheim C, et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1[J]. Science, 2022, 376(6590): eabf8271.
    [10]
    Khan RS, Bril F, Cusi K, et al. Modulation of insulin resistance in nonalcoholic fatty liver disease[J]. Hepatology, 2019, 70(2): 711-724.
    [11]
    Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
    [12]
    Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39(1): 26-42.
    [13]
    Hammoutene A, Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease[J]. J Hepatol, 2019, 70(6): 1278-1291.
    [14]
    Schwabe RF, Tabas I, Pajvani UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis[J]. Gastroenterology, 2020, 158(7): 1913-1928.
    [15]
    Kumar S, Duan QH, Wu RX, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113869.
    [16]
    Zhang CY, Yang M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22(14): 7571.
    [17]
    Svegliati-Baroni G, Pierantonelli I, Torquato P, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309.
    [18]
    Pepinsky RB, Zeng C, Wen D, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog[J]. J Biol Chem, 1998, 273(22): 14037-14045.
    [19]
    Hofmann K. A superfamily of membrane-bound O-acyltransfe-rases with implications for Wnt signaling[J]. Trends Biochem Sci, 2000, 25(3): 111-112.
    [20]
    Stix R, Lee CJ, Faraldo-Gómez JD, et al. Structure and mechanism of DHHC protein acyltransferases[J]. J Mol Biol, 2020, 432(18): 4983-4998.
    [21]
    González Montoro A, Quiroga R, Valdez Taubas J. Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1[J]. Biochem J, 2013, 454(3): 427-435.
    [22]
    Jiang H, Zhang XY, Chen X, et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies[J]. Chem Rev, 2018, 118(3): 919-988.
    [23]
    Masumoto N, Lanyon-Hogg T, Rodgers UR, et al. Membrane bound O-acyltransferases and their inhibitors[J]. Biochem Soc Trans, 2015, 43(2): 246-252.
    [24]
    Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology[J]. Trends Biochem Sci, 2011, 36(5): 245-253.
    [25]
    Rana MS, Lee CJ, Banerjee A. The molecular mechanism of DHHC protein acyltransferases[J]. Biochem Soc Trans, 2019, 47(1): 157-167.
    [26]
    Gao XX, Hannoush RN. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine[J]. Nat Chem Biol, 2014, 10(1): 61-68.
    [27]
    Jin JY, Zhi XL, Wang XH, et al. Protein palmitoylation and its pathophysiological relevance[J]. J Cell Physiol, 2021, 236(5): 3220-3233.
    [28]
    Yao H, Lan J, Li CS, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours[J]. Nat Biomed Eng, 2019, 3(4): 306-317.
    [29]
    Busquets-Hernández C, Triola G. Palmitoylation as a key regulator of ras localization and function[J]. Front Mol Biosci, 2021, 8: 659861.
    [30]
    Shahinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes[J]. Biochemistry, 1995, 34(11): 3813-3822.
    [31]
    Rocks O, Peyker A, Kahms M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms[J]. Science, 2005, 307(5716): 1746-1752.
    [32]
    Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer’s disease[J]. Biol Psychiatry, 2021, 89(8): 745-756.
    [33]
    Dai GC. Neuronal KCNQ2/3 channels are recruited to lipid raft microdomains by palmitoylation of BACE1[J]. J Gen Physiol, 2022, 154(4): e202112888.
    [34]
    Song J, Yuan CM, Li WJ, et al. APP palmitoylation is involved in the increase in Aβ1-42 induced by aluminum[J]. Brain Res, 2022, 1774: 147709.
    [35]
    Andrew RJ, Fernandez CG, Stanley M, et al. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease[J]. Proc Natl Acad Sci U S A, 2017, 114(45): E9665-E9674.
    [36]
    Valdez-Taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation[J]. EMBO J, 2005, 24(14): 2524-2532.
    [37]
    Yang EP, Shen J. The roles and functions of Paneth cells in Crohn’s disease: a critical review[J]. Cell Prolif, 2021, 54(1): e12958.
    [38]
    de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease[J]. Expert Opin Ther Targets, 2017, 21(12): 1123-1139.
    [39]
    Lu Y, Zheng YP, Coyaud é, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing[J]. Science, 2019, 366(6464): 460-467.
    [40]
    Karunakaran U, Elumalai S, Moon JS, et al. CD36 signal transduction in metabolic diseases: novel insights and therapeutic targeting[J]. Cells, 2021, 10(7): 1833.
    [41]
    Shu HY, Peng YZ, Hang WJ, et al. The role of CD36 in cardiovascular disease[J]. Cardiovasc Res, 2022, 118(1): 115-129.
    [42]
    Zhao L, Zhang C, Luo XX, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis[J]. J Hepatol, 2018, 69(3): 705-717.
    [43]
    Zeng S, Wu F, Chen MY, et al. Inhibition of fatty acid translocase (FAT/CD36) palmitoylation enhances hepatic fatty acid β-oxidation by increasing its localization to mitochondria and interaction with long-chain acyl-CoA synthetase 1[J]. Antioxid Redox Signal, 2022, 36(16/17/18): 1081-1100.
    [44]
    Yang S, Jia LJ, Xiang JQ, et al. KLF10 promotes nonalcoholic steatohepatitis progression through transcriptional activation of zDHHC7[J]. EMBO Rep, 2022, 23(6): e54229.
    [45]
    You MY, Wu F, Gao ML, et al. Selenoprotein K contributes to CD36 subcellular trafficking in hepatocytes by accelerating nascent COPII vesicle formation and aggravates hepatic steatosis[J]. Redox Biol, 2022, 57: 102500.
    [46]
    Meiler S, Baumer Y, Huang Z, et al. Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis[J]. J Leukoc Biol, 2013, 93(5): 771-780.
    [47]
    Wang J, Hao JW, Wang X, et al. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane[J]. Cell Rep, 2019, 26(1): 209-221.e5.
    [48]
    Chu HY, Du C, Yang Y, et al. MC-LR aggravates liver lipid metabolism disorders in obese mice fed a high-fat diet via PI3K/AKT/mTOR/SREBP1 signaling pathway[J]. Toxins, 2022, 14(12): 833.
    [49]
    Tan XY, Sun Y, Chen L, et al. Caffeine ameliorates AKT-driven nonalcoholic steatohepatitis by suppressing De novo lipogenesis and MyD88 palmitoylation[J]. J Agric Food Chem, 2022, 70(20): 6108-6122.
    [50]
    Leavens KF, Easton RM, Shulman GI, et al. Akt2 is required for hepatic lipid accumulation in models of insulin resistance[J]. Cell Metab, 2009, 10(5): 405-418.
    [51]
    Blaustein M, Piegari E, Martínez Calejman C, et al. Akt is S-palmitoylated: a new layer of regulation for Akt[J]. Front Cell Dev Biol, 2021, 9: 626404.
    [52]
    Xiong WF, Sun KY, Zhu Y, et al. Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt[J]. Cell Death Dis, 2021, 12(10): 934.
    [53]
    Wang LL, Jia ZD, Wang BC, et al. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway[J]. Turk J Gastroenterol, 2020, 31(12): 902-909.
    [54]
    Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol, 2019, 15(9): 907-916.
    [55]
    Resh MD. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: roles in signalling and disease[J]. Open Biol, 2021, 11(3): 200414.
    [56]
    Guy CD, Suzuki A, Zdanowicz M, et al. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease[J]. Hepatology, 2012, 55(6): 1711-1721.
    [57]
    Sircana A, Paschetta E, Saba F, et al. Recent insight into the role of fibrosis in nonalcoholic steatohepatitis-related hepatocellular carcinoma[J]. Int J Mol Sci, 2019, 20(7): 1745.
    [58]
    Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease[J]. Crit Rev Biochem Mol Biol, 2018, 53(3): 264-278.
    [59]
    Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
    [60]
    Chong LW, Tsai CL, Yang KC, et al. Targeting protein palmitoylation decreases palmitate-induced sphere formation of human liver cancer cells[J]. Mol Med Rep, 2020, 22(2): 939-947.
    [61]
    Chong LW, Chou RH, Liao CC, et al. Saturated fatty acid induces cancer stem cell-like properties in human hepatoma cells[J]. Cell Mol Biol, 2015, 61(6): 85-91.
    [62]
    Davda D, El Azzouny MA, Tom CT, et al. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate[J]. ACS Chem Biol, 2013, 8(9): 1912-1917.
  • Related Articles

    [1]YAN Li, JU Fengyu, SHEN Xin, YU Ye, WANG Wenhui. Research progress of acetylation in the pathogenesis of MASLD[J]. Journal of China Pharmaceutical University, 2025, 56(1): 31-39. DOI: 10.11665/j.issn.1000-5048.2024030103
    [2]SUN Liting, ZHANG Weiguo, TONG Yue. Research progress on targeted protein S-palmitoylation modification in T cell immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(1): 45-52. DOI: 10.11665/j.issn.1000-5048.2023112903
    [3]ZHANG Yuting, WANG Anhui, YANG Jinni, LIN Jiachun, TIAN Yuan, DONG Haijuan, ZHANG Zunjian, SONG Rui. Mechanisms of cholesterol metabolism imbalance in a PA-induced non-alcoholic fatty liver disease cell model[J]. Journal of China Pharmaceutical University, 2023, 54(4): 490-500. DOI: 10.11665/j.issn.1000-5048.2023032401
    [4]WANG Yanmei, YANG Lei, XIN Xiaofei, YIN Lifang. Combination therapy and drug delivery strategies for treatment of non-alcoholic fatty liver disease[J]. Journal of China Pharmaceutical University, 2022, 53(4): 423-432. DOI: 10.11665/j.issn.1000-5048.20220405
    [5]ZHAN Kangning, QUAN Xu, HUANG Zhangjian, ZHAO Liwen. Research progress of protein arginine methyltransferase 5 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(3): 371-378. DOI: 10.11665/j.issn.1000-5048.20210315
    [6]HAN Lei, ZHANG Xiaomeng, QUAN Xu, LEI Yonghua, QIAN Hai. Research progress of apoptosis signal regulating kinases-1 and its inhibitors in non-alcoholic steatohepatitis[J]. Journal of China Pharmaceutical University, 2019, 50(2): 135-142. DOI: 10.11665/j.issn.1000-5048.20190202
    [7]DU Te, CHEN Jing, SHEN Xu. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. Journal of China Pharmaceutical University, 2018, 49(5): 537-544. DOI: 10.11665/j.issn.1000-5048.20180504
    [8]JIN Yue, WU Xuri, CHEN Yijun. Applications of glycosyltransferases in the improvement of druggability of natural products[J]. Journal of China Pharmaceutical University, 2017, 48(5): 529-535. DOI: 10.11665/j.issn.1000-5048.20170504
    [9]XIE Yuan, WANG Hong, FENG Dong, HAO Haiping, WANG Guangji. Influence of curcumin on the pharmacokinetics of lovastatin in rats with fatty liver disease[J]. Journal of China Pharmaceutical University, 2013, 44(6): 543-547. DOI: 10.11665/j.issn.1000-5048.20130611
    [10]Effect of Tea Polysaccharide on Lecithin-Cholesterol Acyltransferase[J]. Journal of China Pharmaceutical University, 1993, (2): 122-124.
  • Cited by

    Periodical cited type(1)

    1. 刘后春,周傲,陈洪波,彭先文,梅书棋,吴俊静. 蛋白翻译后修饰在PRRSV感染中的作用机制. 中国畜牧杂志. 2024(08): 13-20 .

    Other cited types(2)

Catalog

    Article views (287) PDF downloads (484) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return