Citation: | LAN Aili, LIU Gang, WU Chaoran, et al. Research progress of integrated stress response in central nervous system diseases[J]. J China Pharm Univ, 2024, 55(2): 194 − 201. DOI: 10.11665/j.issn.1000-5048.2023112302 |
Integrated stress response is an adaptive response produced by eukaryotic cells after intracellular and extracellular stimulation. The activation of integrated stress response inhibits the translation of most proteins, yet it can promote the translation of certain proteins to cope with complex cellular microenvironment changes. A large number of studies have found that in a variety of nervous system diseases, the integrated stress response can be activated by stress signals of disease-related cells and participates in the occurrence and progression of diseases through processes such as learning and memory consolidation, myelin regeneration and synaptic plasticity. This article summarizes the role, mechanism and possible drug targets of integrated stress response in central nervous system diseases and discusses the potential of pharmacological methods to regulate integrated stress response in the treatment of central nervous system diseases, in order to provide reference for pathological research on and drug development for central nervous system diseases.
[1] |
Wu YS, Zhang ZD, Li YM, et al. The regulation of integrated stress response signaling pathway on viral infection and viral antagonism[J]. Front Microbiol, 2022, 12: 814635. doi: 10.3389/fmicb.2021.814635
|
[2] |
Tian XB, Zhang SL, Zhou LL, et al. Targeting the integrated stress response in cancer therapy[J]. Front Pharmacol, 2021, 12: 747837. doi: 10.3389/fphar.2021.747837
|
[3] |
Wek RC, Anthony TG, Staschke KA. Surviving and adapting to stress: translational control and the integrated stress response[J]. Antioxid Redox Signal, 2023, 39(4/5/6): 351-373.
|
[4] |
Wek RC. Role of eIF2α kinases in translational control and adaptation to cellular stress[J]. Cold Spring Harb Perspect Biol, 2018, 10(7): a032870. doi: 10.1101/cshperspect.a032870
|
[5] |
Costa-Mattioli M, Walter P. The integrated stress response: from mechanism to disease[J]. Science, 2020, 368(6489): eaat5314. doi: 10.1126/science.aat5314
|
[6] |
Glock C, Biever A, Tushev G, et al. The translatome of neuronal cell bodies, dendrites, and axons[J]. Proc Natl Acad Sci U S A, 2021, 118(43): e2113929118. doi: 10.1073/pnas.2113929118
|
[7] |
Vasek MJ, Mueller SM, Fass SB, et al. Local translation in microglial processes is required for efficient phagocytosis[J]. Nat Neurosci, 2023, 26(7): 1185-1195. doi: 10.1038/s41593-023-01353-0
|
[8] |
Díaz-Castro B, Robel S, Mishra A. Astrocyte endfeet in brain function and pathology: open questions[J]. Annu Rev Neurosci, 2023, 46: 101-121. doi: 10.1146/annurev-neuro-091922-031205
|
[9] |
Coelho RP, Yuelling LM, Fuss B, et al. Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes[J]. Glia, 2009, 57(16): 1754-1764. doi: 10.1002/glia.20888
|
[10] |
Costa-Mattioli M, Sossin WS, Klann E, et al. Translational control of long-lasting synaptic plasticity and memory[J]. Neuron, 2009, 61(1): 10-26. doi: 10.1016/j.neuron.2008.10.055
|
[11] |
Jiang LH, Dong R, Xu MH, et al. Inhibition of the integrated stress response reverses oxidative stress damage-induced postoperative cognitive dysfunction[J]. Front Cell Neurosci, 2022, 16: 992869. doi: 10.3389/fncel.2022.992869
|
[12] |
O’Connor T, Sadleir KR, Maus E, et al. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis[J]. Neuron, 2008, 60(6): 988-1009. doi: 10.1016/j.neuron.2008.10.047
|
[13] |
Lin WS, Bailey SL, Ho H, et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage[J]. J Clin Invest, 2007, 117(2): 448-456. doi: 10.1172/JCI29571
|
[14] |
Kim HJ, Raphael AR, LaDow ES, et al. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models[J]. Nat Genet, 2014, 46(2): 152-160. doi: 10.1038/ng.2853
|
[15] |
Chou A, Krukowski K, Jopson T, et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury[J]. Proc Natl Acad Sci U S A, 2017, 114(31): E6420-E6426.
|
[16] |
Zhang GY, Wang XD, Rothermel BA, et al. The integrated stress response in ischemic diseases[J]. Cell Death Differ, 2022, 29(4): 750-757. doi: 10.1038/s41418-021-00889-7
|
[17] |
Bond S, Lopez-Lloreda C, Gannon PJ, et al. The integrated stress response and phosphorylated eukaryotic initiation factor 2α in neurodegeneration[J]. J Neuropathol Exp Neurol, 2020, 79(2): 123-143. doi: 10.1093/jnen/nlz129
|
[18] |
Moon SL, Sonenberg N, Parker R. Neuronal regulation of eIF2α function in health and neurological disorders[J]. Trends Mol Med, 2018, 24(6): 575-589. doi: 10.1016/j.molmed.2018.04.001
|
[19] |
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: inhibition of amyloid beta and tau tangle formation[J]. Int J Biol Macromol, 2021, 167: 382-394. doi: 10.1016/j.ijbiomac.2020.11.192
|
[20] |
Tiwari S, Atluri V, Kaushik A, et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nano medicine, 2019, 14: 5541-5554. doi: 10.2147/IJN.S200490
|
[21] |
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases[J]. Metab Brain Dis, 2020, 35(8): 1241-1250. doi: 10.1007/s11011-020-00600-8
|
[22] |
Hu ZT, Yu PP, Zhang YY, et al. Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer’s disease[J]. Transl Psychiatry, 2022, 12(1): 96. doi: 10.1038/s41398-022-01862-9
|
[23] |
Oliveira MM, Lourenco MV, Longo F, et al. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease[J]. Sci Signal, 2021, 14(668): eabc5429. doi: 10.1126/scisignal.abc5429
|
[24] |
Tapella L, Dematteis G, Moro M, et al. Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer’s disease mouse model: a role for ER-mitochondria interaction[J]. Cell Death Dis, 2022, 13(10): 878. doi: 10.1038/s41419-022-05324-4
|
[25] |
Hayakawa-Ogura M, Tana, Nakagawa T, et al. GADD34 suppresses eIF2α phosphorylation and improves cognitive function in Alzheimer’s disease-model mice[J]. Biochem Biophys Res Commun, 2023, 654: 112-119. doi: 10.1016/j.bbrc.2023.02.077
|
[26] |
Johnson ECB, Kang J. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease[J]. PeerJ, 2016, 4: e2565. doi: 10.7717/peerj.2565
|
[27] |
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies[J]. Exp Neurol, 2021, 335: 113518. doi: 10.1016/j.expneurol.2020.113518
|
[28] |
Page AB, Owen CR, Kumar R, et al. Persistent eIF2α(P) is colocalized with cytoplasmic cytochrome c in vulnerable hippocampal neurons after 4hours of reperfusion following 10-minute complete brain ischemia[J]. Acta Neuropathol, 2003, 106(1): 8-16. doi: 10.1007/s00401-003-0693-2
|
[29] |
Lin YW, Chen TY, Hung CY, et al. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress[J]. Int J Mol Med, 2018, 42(1): 182-192.
|
[30] |
Shi WZ, Tian Y, Li J. GCN2 suppression attenuates cerebral ischemia in mice by reducing apoptosis and endoplasmic reticulum (ER) stress through the blockage of FoxO3a-regulated ROS production[J]. Biochem Biophys Res Commun, 2019, 516(1): 285-292. doi: 10.1016/j.bbrc.2019.05.181
|
[31] |
Font-Belmonte E, Ugidos IF, Santos-Galdiano M, et al. Post-ischemic salubrinal administration reduces necroptosis in a rat model of global cerebral ischemia[J]. J Neurochem, 2019, 151(6): 777-794. doi: 10.1111/jnc.14789
|
[32] |
Jamjoom AAB, Rhodes J, Andrews PJD, et al. The synapse in traumatic brain injury[J]. Brain, 2021, 144(1): 18-31. doi: 10.1093/brain/awaa321
|
[33] |
Pavlovic D, Pekic S, Stojanovic M, et al. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae[J]. Pituitary, 2019, 22(3): 270-282. doi: 10.1007/s11102-019-00957-9
|
[34] |
Frias ES, Hoseini MS, Krukowski K, et al. Aberrant cortical spine dynamics after concussive injury are reversed by integrated stress response inhibition[J]. Proc Natl Acad Sci U S A, 2022, 119(42): e2209427119. doi: 10.1073/pnas.2209427119
|
[35] |
Krukowski K, Nolan A, Frias ES, et al. Integrated stress response inhibitor reverses sex-dependent behavioral and cell-specific deficits after mild repetitive head trauma[J]. J Neurotrauma, 2020, 37(11): 1370-1380. doi: 10.1089/neu.2019.6827
|
[36] |
Wang ZF, Gao C, Chen W, et al. Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model[J]. Neurobiol Learn Mem, 2019, 161: 12-25. doi: 10.1016/j.nlm.2019.03.002
|
[37] |
D’Amico E, Grosso G, Nieves JW, et al. Metabolic abnormalities, dietary risk factors and nutritional management in amyotrophic lateral sclerosis[J]. Nutrients, 2021, 13(7): 2273. doi: 10.3390/nu13072273
|
[38] |
Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2022, 400(10360): 1363-1380. doi: 10.1016/S0140-6736(22)01272-7
|
[39] |
Cheng WW, Wang SP, Mestre AA, et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation[J]. Nat Commun, 2018, 9(1): 51. doi: 10.1038/s41467-017-02495-z
|
[40] |
Zheng WZ, Wang KX, Wu YC, et al. C9orf72 regulates the unfolded protein response and stress granule formation by interacting with eIF2α[J]. Theranostics, 2022, 12(17): 7289-7306. doi: 10.7150/thno.76138
|
[41] |
López-Erauskin J, Tadokoro T, Baughn MW, et al. ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS[J]. Neuron, 2020, 106(2): 354. doi: 10.1016/j.neuron.2020.04.006
|
[42] |
Ghadge GD, Sonobe Y, Camarena A, et al. Knockdown of GADD34 in neonatal mutant SOD1 mice ameliorates ALS[J]. Neurobiol Dis, 2020, 136: 104702. doi: 10.1016/j.nbd.2019.104702
|
[43] |
Li H, Lian GJ, Wang G, et al. A review of possible therapies for multiple sclerosis[J]. Mol Cell Biochem, 2021, 476(9): 3261-3270. doi: 10.1007/s11010-021-04119-z
|
[44] |
Cunnea P, Mháille AN, McQuaid S, et al. Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis[J]. Mult Scler, 2011, 17(7): 808-818. doi: 10.1177/1352458511399114
|
[45] |
Fhlathartaigh MN, McMahon J, Reynolds R, et al. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination[J]. Acta Neuropathol Commun, 2013, 1: 37. doi: 10.1186/2051-5960-1-37
|
[46] |
Chen YN, Podojil JR, Kunjamma RB, et al. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis[J]. Brain, 2019, 142(2): 344-361. doi: 10.1093/brain/awy322
|
[47] |
Chen YN, Kunjamma RB, Weiner M, et al. Prolonging the integrated stress response enhances CNS remyelination in an inflammatory environment[J]. eLife, 2021, 10: e65469. doi: 10.7554/eLife.65469
|
[48] |
Chen YN, Quan SH, Patil V, et al. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response[J]. Glia, 2023, 71(9): 2180-2195.
|
[49] |
Lin WS, Kemper A, Dupree JL, et al. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress[J]. Brain, 2006, 129 (Pt 5): 1306-1318.
|
[50] |
Halliday M, Radford H, Sekine Y, et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity[J]. Cell Death Dis, 2015, 6(3): e1672. doi: 10.1038/cddis.2015.49
|
[51] |
Zyryanova AF, Kashiwagi K, Rato C, et al. ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B[J]. Mol Cell, 2021, 81 (1): 88-103. e6.
|
[52] |
Hosoi T, Kakimoto M, Tanaka K, et al. Unique pharmacological property of ISRIB in inhibition of Aβ-induced neuronal cell death[J]. J Pharmacol Sci, 2016, 131(4): 292-295. doi: 10.1016/j.jphs.2016.08.003
|
[53] |
Bugallo R, Marlin E, Baltanás A, et al. Fine tuning of the unfolded protein response by ISRIB improves neuronal survival in a model of amyotrophic lateral sclerosis[J]. Cell Death Dis, 2020, 11(5): 397. doi: 10.1038/s41419-020-2601-2
|
[54] |
Krukowski K, Nolan A, Frias ES, et al. Small molecule cognitive enhancer reverses age-related memory decline in mice[J]. eLife, 2020, 9: e62048. doi: 10.7554/eLife.62048
|
[55] |
Yi SY, Chen K, Zhang LH, et al. Endoplasmic reticulum stress is involved in stress-induced hypothalamic neuronal injury in rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK pathways[J]. Front Cell Neurosci, 2019, 13: 190.
|
[56] |
Dhir N, Jain A, Sharma AR, et al. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling[J]. Metab Brain Dis, 2023, 38(4): 1177-1192. doi: 10.1007/s11011-023-01183-w
|
[57] |
Kim MJ, Min SH, Shin SY, et al. Attenuation of PERK enhances glucose-stimulated insulin secretion in islets[J]. J Endocrinol, 2018, 236(3): 125-136. doi: 10.1530/JOE-17-0497
|
[58] |
Samluk L, Ostapczuk P, Dziembowska M. Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis[J]. Mol Biol Cell, 2022, 33(8): ar67. doi: 10.1091/mbc.E21-11-0553
|
[59] |
Wang YC, Li X, Shen YT, et al. PERK (protein kinase RNA-like ER kinase) branch of the unfolded protein response confers neuroprotection in ischemic stroke by suppressing protein synthesis[J]. Stroke, 2020, 51(5): 1570-1577. doi: 10.1161/STROKEAHA.120.029071
|
[60] |
Davis CK, Bathula S, Hsu M, et al. An antioxidant and anti-ER stress combo therapy decreases inflammation, secondary brain damage and promotes neurological recovery following traumatic brain injury in mice[J]. J Neurosci, 2022, 42(35): 6810-6821. doi: 10.1523/JNEUROSCI.0212-22.2022
|
[61] |
Zadorozhnii PV, Kiselev VV, Kharchenko AV. In silico toxicity evaluation of Salubrinal and its analogues[J]. Eur J Pharm Sci, 2020, 155: 105538. doi: 10.1016/j.ejps.2020.105538
|
[62] |
Ho KH, Lee YT, Chen PH, et al. Guanabenz sensitizes glioblastoma cells to sunitinib by inhibiting GADD34-mediated autophagic signaling[J]. Neurotherapeutics, 2021, 18(2): 1371-1392. doi: 10.1007/s13311-020-00961-z
|
[63] |
Witkamp D, Oudejans E, Hu-A-Ng GV, et al. Guanabenz ameliorates disease in vanishing white matter mice in contrast to sephin1[J]. Ann Clin Transl Neurol, 2022, 9(8): 1147-1162. doi: 10.1002/acn3.51611
|
[64] |
Dalla Bella E, Bersano E, Antonini G, et al. The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial[J]. Brain, 2021, 144(9): 2635-2647. doi: 10.1093/brain/awab167
|
[65] |
Ruiz A, Zuazo J, Ortiz-Sanz C, et al. Sephin1 protects neurons against excitotoxicity independently of the integrated stress response[J]. Int J Mol Sci, 2020, 21(17): 6088. doi: 10.3390/ijms21176088
|
[66] |
Thapa S, Abdelaziz DH, Abdulrahman BA, et al. Sephin1 reduces prion infection in prion-infected cells and animal model[J]. Mol Neurobiol, 2020, 57(5): 2206-2219. doi: 10.1007/s12035-020-01880-y
|
[67] |
Huang TC, Luo L, Jiang SH, et al. Targeting integrated stress response regulates microglial M1/M2 polarization and attenuates neuroinflammation following surgical brain injury in rat[J]. Cell Signal, 2021, 85: 110048. doi: 10.1016/j.cellsig.2021.110048
|
[68] |
Dai B, Yan T, Shen YX, et al. Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response[J]. Neural Regen Res, 2017, 12(2): 283-289. doi: 10.4103/1673-5374.199006
|