• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WU Lingling, SUN Lidan. Research progress of glucagon-like peptide-1 and its analogues on oxidative stress[J]. Journal of China Pharmaceutical University, 2020, 51(1): 114-120. DOI: 10.11665/j.issn.1000-5048.20200117
Citation: WU Lingling, SUN Lidan. Research progress of glucagon-like peptide-1 and its analogues on oxidative stress[J]. Journal of China Pharmaceutical University, 2020, 51(1): 114-120. DOI: 10.11665/j.issn.1000-5048.20200117

Research progress of glucagon-like peptide-1 and its analogues on oxidative stress

More Information
  • Glucagon-like peptide-1(GLP-1), a polypeptide secreted by small intestinal L cells, has various effects including increasing insulin synthesis and secretion, suppressing appetite, and delaying gastric emptying. In addition to glucose control, GLP-1 has multiple functions in a variety of tissues and organs. A number of studies have shown that GLP-1 receptor agonists could treat a variety of chronic diseases, including diabetes, through antioxidant mechanisms. Based on oxidative stress, this paper summarizes the current progress in the synthesis & metabolism, pancreatic and extracantral effects, anti-oxidation effects of diabetes and its complications, aging, and neurological diseases of GLP-1, with an attempt to provide theoretical reference to researches on related oxidative stress mechanisms and development of new drug.
  • [1]
    Yin L,Wang Y,Chen S,et al.Advances of glucagon-like peptide-1 receptor agonists in the treatment of nervous system diseases[J].J China Pharm Univ(中国药科大学学报),2014,45(4):383-391.
    [2]
    Li CY,Huang WL,Qian H.Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J].J China Pharm Univ(中国药科大学学报),2018,49(6):660-670.
    [3]
    Guglielmi V,Sbraccia P.GLP-1 receptor independent pathways:emerging beneficial effects of GLP-1 breakdown products[J].Eat Weight Disord,2017,22(2):231-240.
    [4]
    Wang Y, Egan JM, Raygada M, et al. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cells[J].Endocrinology,1995,136(11):4910-4917.
    [5]
    Huang YY,Xu MX,Zhuang PW,et al.Advances on the Epac signal molecule in cardiovascular diseases[J].Chin J New Drugs(中国新药杂志),2017,26(17):2034-2039.
    [6]
    Oh YS,Jun HS.Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling[J].Int J Mol Sci,2017,19(1):E26.
    [7]
    Palus K,Caka J.Diabetes mellitus in cats relevant to human type 2 diabetes-current knowledge and new treatment strategies-a review[J].Ann Anim Sci Vol,2015,15(1):19-30.
    [8]
    Hölscher C.Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide analogues as novel treatments for Alzheimer′s and Parkinson′s disease[J].Cardiovasc Endocrinol,2016,5(3):93-98.
    [9]
    Rajappa R,Sireesh D,Salai MB,et al.Treatment with naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo[J].Front Pharmacol,2019,9:1562.
    [10]
    Li S,Vaziri ND,Masuda Y,et al.Pharmacological activation of Nrf2 pathway improves pancreatic islet isolation and transplantation[J].Cell Transplant,2015,24(11):2273-2283.
    [11]
    Puddu A,Mach F,Nencioni A,et al.An emerging role of glucagon-like peptide-1 in preventing advanced-glycation-end-product-mediated damages in diabetes[J].Mediators Inflamm,2013,2013:591056.
    [12]
    Fernández-Millán E,Martín MA,Goya L,et al.Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation[J].Free Radic Biol Med,2016,95:16-26.
    [13]
    Oh YS,Seo E,Park K,et al.Compound 19e,a novel glucokinase activator,protects against cytokine-induced beta-cell apoptosis in INS-1 cells[J].Front Pharmacol,2017,8:169.
    [14]
    Tomas E,Stanojevic V,Habener JF.GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes[J].Regul Pept,2011,167(2/3):177-184.
    [15]
    Kim MH,Kim EH,Jung HS,et al.EX4 stabilizes and activates Nrf2 via PKCδ,contributing to the prevention of oxidative stress-induced pancreatic beta cell damage[J].Toxicol Appl Pharmacol,2017,315:60-69.
    [16]
    Bunck MC,Cornér A,Eliasson B,et al.One-year treatment with exenatide vs.insulin glargine:effects on postprandial glycemia,lipid profiles,and oxidative stress[J].Atherosclerosis,2010,212(1):223-229.
    [17]
    Okada K,Kotani K,Yagyu H,et al.Effects of treatment with liraglutide on oxidative stress and cardiac natriuretic peptide levels in patients with type 2 diabetes mellitus[J].Endocrine,2014,47(3):962-964.
    [18]
    Rizzo M,Abate N,Chandalia M,et al.Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes:a prospective pilot study[J].J Clin Endocrinol Metab,2015,100(2):603-606.
    [19]
    Wu YL,Huang J,Liu J,et al.Protective effect of recombinant human glucagon-like peptide-1(rhGLP-1)pretreatment in STZ-induced diabetic mice[J].J Pept Sci,2011,17(7):499-504.
    [20]
    Shimoda M,Kanda Y,Hamamoto S,et al.The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes[J].Diabetologia,2011,54(5):1098-1108.
    [21]
    Ding XK,Saxena NK,Lin SB,et al.Exendin-4,a glucagon-like protein-1(GLP-1)receptor agonist,reverses hepatic steatosis in ob/ob mice[J].Hepatology,2006,43(1):173-181.
    [22]
    Patel V,Joharapurkar A,Dhanesha N,et al.Combination of omeprazole with GLP-1 agonist therapy improves insulin sensitivity and antioxidant activity in liver in type 1 diabetic mice[J].Pharmacol Rep,2013,65(4):927-936.
    [23]
    Mangmool S,Hemplueksa P,Parichatikanond W,et al.Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes[J].Mol Endocrinol,2015,29(4):583-596.
    [24]
    Li Q,Lin Y,Wang S,et al.GLP-1 inhibits high-glucose-induced oxidative injury of vascular endothelial cells[J].Sci Rep,2017,7(1):8008.
    [25]
    Civantos E,Bosch E,Ramirez E,et al.Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway[J].Diabetes Metab Syndr Obes,2017,10:207-222.
    [26]
    Wei J,Zhang Y,Luo Y,et al.Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2,Tgfβ1/2,and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice[J].Free Radic Biol Med,2014,67:91-102.
    [27]
    Fujita H,Morii T,Fujishima H,et al.The protective roles of GLP-1R signaling in diabetic nephropathy:possible mechanism and therapeutic potential[J].Kidney Int,2014,85(3):579-589.
    [28]
    Hendarto H,Inoguchi T,Maeda Y,et al.GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases[J].Metab Clin Exp,2012,61(10):1422-1434.
    [29]
    Teramoto S,Miyamoto N,Yatomi K,et al.Exendin-4,a glucagon-like peptide-1 receptor agonist,provides neuroprotection in mice transient focal cerebral ischemia[J].J Cereb Blood Flow Metab,2011,31(8):1696-1705.
    [30]
    Chien CT, Jou MJ, Cheng TY, et al. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats[J].J Cereb Blood Flow Metab,2015,35(11):1790-1803.
    [31]
    Zhu HL,Zhang YS,Shi ZS,et al.The neuroprotection of liraglutide against ischaemia-induced apoptosis through the activation of the PI3K/AKT and MAPK pathways[J].Sci Rep,2016,6:26859.
  • Related Articles

    [1]AN Dongxian, YAO Wenbing, GAO Xiangdong, TIAN Hong. Design and oral hypoglycemic activity of novel oral hypoglycemic peptide ODA[J]. Journal of China Pharmaceutical University, 2023, 54(4): 511-518. DOI: 10.11665/j.issn.1000-5048.2023032703
    [2]LI Chengye, HUANG Wenlong, QIAN Hai. Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J]. Journal of China Pharmaceutical University, 2018, 49(6): 660-670. DOI: 10.11665/j.issn.1000-5048.20180604
    [3]LIU Yan, LI Chengye, CAI Xingguang, SUN Lidan, HUANG Wenlong. Synthesis and preliminary anti-diabetic activity evaluation of novel PEGylated GLP-1 receptor agonists[J]. Journal of China Pharmaceutical University, 2018, 49(5): 558-567. DOI: 10.11665/j.issn.1000-5048.20180507
    [4]YAO Aihong, CHANG Yujie, JIANG Cheng, SUN Haiying. Research progress of Polo-like kinase 1 inhibitors targeting Polo-box domain[J]. Journal of China Pharmaceutical University, 2016, 47(1): 1-8. DOI: 10.11665/j.issn.1000-5048.20160101
    [5]SHEN Kai, KOU Junping, YU Boyang. Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(5): 532-540. DOI: 10.11665/j.issn.1000-5048.20150503
    [6]YIN Lei, WANG Ying, CHEN Song, GAO Xiangdong. Advances of glucagon-like peptide-1 receptor agonists in the treatment of nervous system diseases[J]. Journal of China Pharmaceutical University, 2014, 45(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20140401
    [7]ZHANG Yu-mao, DAI De-zai, YU Feng, DAI Yin. Role of Rho/ROCK pathway and NADPH oxidase in the pathogenesis of diabetic nephropathy[J]. Journal of China Pharmaceutical University, 2012, 43(2): 187-192.
    [8]LI Tai-ming, MA Yan-hong, XU Shu, LIU Tao, GU Chun-jiao, XU Chen, LIU Jing-jing. Preparation and preliminary analysis of activity of recombinant GLP-1 analogue[J]. Journal of China Pharmaceutical University, 2011, 42(6): 560-564.
    [9]HU Chen, YU Feng, DAI De-zai, DAI Yin. Stress-up-regulated myocardial endothelin receptors are suppressed by chlorobenzyltetrahydroberberine CPU86017 and its RS chiral isomer[J]. Journal of China Pharmaceutical University, 2009, 40(4): 374-379.
    [10]Effects of Crocetin on the Myocardial Cell Damages Due to Oxidative Stress[J]. Journal of China Pharmaceutical University, 2003, (5): 66-69.
  • Cited by

    Periodical cited type(5)

    1. 蔡憐环,陈辉,江苏珍,王国芳,林高城. 薯蓣粥对糖尿病脑卒中大鼠胰岛素抵抗及氧化应激的影响. 中国当代医药. 2024(08): 7-12 .
    2. 赵靖,韦薇,魏开坤. 脂肪酸链修饰的重组胰高血糖素样肽1类药物的药学研究和审评考虑. 中国新药杂志. 2023(24): 2507-2512 .
    3. 李承燕,周璇,唐兰芬,莫波,陈银慧,陈巧媚,闫星羽,敖当. 胰高血糖素样肽-1对新生乳鼠脑缺血再灌注损伤的影响. 中国医药导报. 2022(02): 4-7+12 .
    4. 陈志天,朱永刚,朱秀华,王璐,曹雪丽. 基于胰高血糖素样肽1受体及其下游信号探讨有氧运动对小鼠心梗模型心功能康复的影响. 中国病理生理杂志. 2022(02): 230-237 .
    5. 李婉璋. 芪精丹兰汤对脾虚湿蕴型2型糖尿病患者神经电生理及肾功能的影响. 现代电生理学杂志. 2022(02): 84-88 .

    Other cited types(4)

Catalog

    Article views (383) PDF downloads (729) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return