Citation: | AN Dongxian, YAO Wenbing, GAO Xiangdong, TIAN Hong. Design and oral hypoglycemic activity of novel oral hypoglycemic peptide ODA[J]. Journal of China Pharmaceutical University, 2023, 54(4): 511-518. DOI: 10.11665/j.issn.1000-5048.2023032703 |
[1] |
Festa A, Haffner SM, Wagenknecht LE, et al. Longitudinal decline of β-cell function: comparison of a direct method vs a fasting surrogate measure: the insulin resistance atherosclerosis study[J]. J Clin Endocrinol Metab, 2013, 98(10): 4152-4159.
|
[2] |
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP[J]. Gastroenterology, 2007, 132(6): 2131-2157.
|
[3] |
Cariou B. Harnessing the incretin system beyond glucose control: potential cardiovascular benefits of GLP-1 receptor agonists in type 2 diabetes[J]. Diabetes Metab, 2012, 38(4): 298-308.
|
[4] |
Ip W, Shao WJ, Chiang YT,et al. GLP-1-derived nonapeptide GLP-1(28-36)amide represses hepatic gluconeogenic gene expression and improves pyruvate tolerance in high-fat diet-fed mice[J]. Am J Physiol Endocrinol Metab, 2013, 305(11): E1348-E1358.
|
[5] |
Sisley S, Gutierrez-Aguilar R, Scott M,et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect[J]. J Clin Invest, 2014, 124(6): 2456-2463.
|
[6] |
Trahair LG, Horowitz M, Hausken T, et al. Effects of exogenous glucagon-like peptide-1 on the blood pressure, heart rate, mesenteric blood flow, and glycemic responses to intraduodenal glucose in healthy older subjects[J]. J Clin Endocrinol Metab, 2014, 99(12): E2628-E2634.
|
[7] |
Burmeister MA, Ayala JE, Smouse H,et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice[J]. Diabetes, 2017, 66(2): 372-384.
|
[8] |
Inagaki N, Seino Y, Takeda J, et al. Gastric inhibitory polypeptide: structure and chromosomal localization of the human gene[J]. Mol Endocrinol, 1989, 3(6): 1014-1021.
|
[9] |
Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans[J]. Diabetes, 2011, 60(12): 3103-3109.
|
[10] |
Gault VA, Flatt PR, O’Harte FPM. Glucose-dependent insulinotropic polypeptide analogues and their therapeutic potential for the treatment of obesity-diabetes[J]. BiochemBiophys Res Commun, 2003, 308(2): 207-213.
|
[11] |
Kim SJ, Nian CL, Karunakaran S, et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis[J]. PLoS One, 2012, 7(7):
|
[12] |
Martin CMA, Irwin N, Flatt PR, et al. A novel acylated form of (d-Ala(2)) GIP with improved antidiabetic potential, lacking effect on body fat stores[J]. BiochimBiophys Acta, 2013, 1830(6): 3407-3413.
|
[13] |
Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1[J]. Metabolism, 2019, 96: 46-55.
|
[14] |
Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions[J]. Lancet Diabetes Endocrinol, 2016, 4(6): 525-536.
|
[15] |
Wu YX, Tian H, Gao XD. Research progress of drugs for treatment of diabetes based on incretin[J]. Pharm Biotechnol (药物生物技术), 2022, 29(6): 624-628.
|
[16] |
Knerr PJ, Mowery SA, Finan B, et al. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates[J]. Peptides, 2020, 125: 170225.
|
[17] |
Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity[J]. N Engl J Med, 2022, 387(3): 205-216.
|
[18] |
Dimitrios P, Christodoulos P, Michael D. Tirzepatide versus semaglutide once weekly in type 2 diabetes[J]. N Engl J Med, 2022, 386(7):
|
[19] |
Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials[J]. Diabetes Obes Metab, 2018, 20(
|
[20] |
Overgaard RV, Navarria A, Ingwersen SH, et al. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials[J]. Clin Pharmacokinet, 2021, 60(10): 1335-1348.
|
[21] |
Sai WB, Tian H, Yang KM, et al. Systematic design of trypsin cleavage site mutated Exendin4-cysteine 1, an orally bioavailable glucagon-like peptide-1 receptor agonist[J]. Int J Mol Sci, 2017, 18(3): 578.
|
[22] |
Lu WS, Tian H, Qian P, et al. An orally available hypoglycaemic peptide taken up by caveolae transcytosis displays improved hypoglycaemic effects and body weight control in db/db mice[J]. Br J Pharmacol, 2020, 177(15): 3473-3488.
|
[23] |
Iftikhar M, Iftikhar A, Zhang HJ, et al. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: a review[J]. Food Res Int, 2020, 136: 109240.
|
[24] |
Buckley ST, B?kdal TA, Vegge A, et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist[J]. Sci Transl Med, 2018, 10(467):
|
[25] |
Brayden DJ, Gleeson J, Walsh EG. A head-to-head multi-parametric high content analysis of a series of medium chain fatty acid intestinal permeation enhancers in Caco-2 cells[J]. Eur J Pharm Biopharm, 2014, 88(3): 830-839.
|
[26] |
Twarog C, Fattah S, Heade J, et al. Intestinal permeation enhancers for oral delivery of macromolecules: a comparison between salcaprozate sodium (SNAC) and sodium caprate (C10)[J]. Pharmaceutics, 2019, 11(2): 78.
|
[27] |
Finan B, Clemmensen C, Müller TD. Emerging opportunities for the treatment of metabolic diseases: glucagon-like peptide-1 based multi-agonists[J]. Mol Cell Endocrinol, 2015, 418: 42-54.
|