• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHEN Baiyu, LYU Lunan, XU Xiaodi, et al. Reflections on improving drug success rates with AIDD and CADD[J]. J China Pharm Univ, 2024, 55(3): 284 − 294. DOI: 10.11665/j.issn.1000-5048.2024011302
Citation: CHEN Baiyu, LYU Lunan, XU Xiaodi, et al. Reflections on improving drug success rates with AIDD and CADD[J]. J China Pharm Univ, 2024, 55(3): 284 − 294. DOI: 10.11665/j.issn.1000-5048.2024011302

Reflections on improving drug success rates with AIDD and CADD

Funds: This study was supported by the National Natural Science Foundation of China (No. 82273853, No. 82073765)
More Information
  • Received Date: January 12, 2024
  • Available Online: June 24, 2024
  • The rapid advancements in artificial intelligence (AI) and computational sciences, particularly through the introduction of artificial intelligence drug design (AIDD) and computer-aided drug design (CADD) technologies, have revolutionized pathways in drug development. These include techniques such as natural language processing, image recognition, deep learning, and machine learning. By employing advanced algorithms and data processing techniques, these technologies have significantly enhanced the efficiency and success rate of R&D processes. In drug discovery, AI technologies have accelerated the identification of drug targets, screening of candidate drugs, pharmacological assessments, and quality control, effectively reducing R&D risks and costs. This article delves into the application of AIDD and CADD in drug development, analyzing their roles in enhancing the success rates and efficiencies of drug design, exploring their future trends, and addressing the potential challenges.

  • [1]
    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs[J]. J Health Econ, 2016, 47: 20-33. doi: 10.1016/j.jhealeco.2016.01.012
    [2]
    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs[J]. J Health Econ, 2016, 47: 20-33. doi: 10.1016/j.jhealeco.2016.01.012
    [3]
    Vemula D, Jayasurya P, Sushmitha V, et al. CADD, AI and ML in drug discovery: a comprehensive review[J]. Eur J Pharm Sci, 2023, 181: 106324. doi: 10.1016/j.ejps.2022.106324
    [4]
    National Medical Products Administration. Novel Drug Screening R&D Platform-CADD[EB/OL].(2020-08-13)[2023-11-23]. http://www.cnpharm.com/c/2020-08-13/748891.shtmL.

    National Medical Products Administration. Novel Drug Screening R&D Platform-CADD[EB/OL].(2020-08-13)[2023-11-23]. http://www.cnpharm.com/c/2020-08-13/748891.shtmL.
    [5]
    Liu XW, Shi DF, Zhou SY, et al. Molecular dynamics simulations and novel drug discovery[J]. Expert Opin Drug Discov, 2018, 13(1): 23-37. doi: 10.1080/17460441.2018.1403419
    [6]
    Yan T, Yu L, Zhang N, et al. The advanced development of molecular targeted therapy for hepatocellular carcinoma[J]. Cancer Biol Med, 2022, 19(6): 802-817.
    [7]
    Boomsma W, Nielsen SV, Lindorff-Larsen K, et al. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases[J]. PeerJ, 2016, 4: e1725. doi: 10.7717/peerj.1725
    [8]
    Huang HJ, Yu HW, Chen CY, et al. Current developments of computer-aided drug design[J]. J Taiwan Inst Chem Eng, 2010, 41(6): 623-635. doi: 10.1016/j.jtice.2010.03.017
    [9]
    Matsuzaka Y, Uesawa Y. Ensemble learning, deep learning-based and molecular descriptor-based quantitative structure-activity relationships[J]. Molecules, 2023, 28(5): 2410. doi: 10.3390/molecules28052410
    [10]
    Bissaro M, Sturlese M, Moro S. The rise of molecular simulations in fragment-based drug design (FBDD): an overview[J]. Drug Discov Today, 2020, 25(9): 1693-1701. doi: 10.1016/j.drudis.2020.06.023
    [11]
    Kashyap A, Singh PK, Silakari O. Counting on fragment based drug design approach for drug discovery[J]. Curr Top Med Chem, 2019, 18(27): 2284-2293. doi: 10.2174/1568026619666181130134250
    [12]
    Sheng CQ, Zhang WN. Fragment informatics and computational fragment-based drug design: an overview and update[J]. Med Res Rev, 2013, 33(3): 554-598. doi: 10.1002/med.21255
    [13]
    Konteatis ZD. In silico fragment-based drug design[J]. Expert Opin Drug Discov, 2010, 5(11): 1047-1065. doi: 10.1517/17460441.2010.523697
    [14]
    Liu CF, Hu LD, Dong GY, et al. Emerging drug design strategies in anti-influenza drug discovery[J]. Acta Pharm Sin B, 2023, 13(12): 4715-4732. doi: 10.1016/j.apsb.2023.08.010
    [15]
    Li QX, Kang CB. Perspectives on fragment-based drug discovery: a strategy applicable to diverse targets[J]. Curr Top Med Chem, 2021, 21(13): 1099-1112. doi: 10.2174/1568026621666210804115700
    [16]
    Giordano D, Biancaniello C, Argenio MA, et al. Drug design by pharmacophore and virtual screening approach[J]. Pharmaceuticals, 2022, 15(5): 646. doi: 10.3390/ph15050646
    [17]
    Dror O, Schneidman-Duhovny D, Inbar Y, et al. Novel approach for efficient pharmacophore-based virtual screening: method and applications[J]. J Chem Inf Model, 2009, 49(10): 2333-2343. doi: 10.1021/ci900263d
    [18]
    Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances[J]. Drug Discov Today, 2010, 15(11/12): 444-450.
    [19]
    Zhong FS, Xing J, Li XT, et al. Artificial intelligence in drug design[J]. Sci China Life Sci, 2018, 61(10): 1191-1204. doi: 10.1007/s11427-018-9342-2
    [20]
    Yang X, Wang YF, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery[J]. Chem Rev, 2019, 119(18): 10520-10594. doi: 10.1021/acs.chemrev.8b00728
    [21]
    Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology driven modern drug discovery and development[J]. Int J Mol Sci, 2023, 24(3): 2026. doi: 10.3390/ijms24032026
    [22]
    Jiménez-Luna J, Grisoni F, Weskamp N, et al. Artificial intelligence in drug discovery: recent advances and future perspectives[J]. Expert Opin Drug Discov, 2021, 16(9): 949-959. doi: 10.1080/17460441.2021.1909567
    [23]
    Li Z, Jiang MJ, Wang S, et al. Deep learning methods for molecular representation and property prediction[J]. Drug Discov Today, 2022, 27(12): 103373. doi: 10.1016/j.drudis.2022.103373
    [24]
    Lin CX, Guan YF, Li HD. Artificial intelligence approaches for molecular representation in drug response prediction[J]. Curr Opin Struct Biol, 2024, 84: 102747. doi: 10.1016/j.sbi.2023.102747
    [25]
    Chuang KV, Gunsalus LM, Keiser MJ. Learning molecular representations for medicinal chemistry[J]. J Med Chem, 2020, 63(16): 8705-8722. doi: 10.1021/acs.jmedchem.0c00385
    [26]
    Chen BY, Pan ZQ, Mou MJ, et al. Is fragment-based graph a better graph-based molecular representation for drug design? A comparison study of graph-based models[J]. Comput Biol Med, 2024, 169: 107811. doi: 10.1016/j.compbiomed.2023.107811
    [27]
    Xiong ZP, Wang DY, Liu XH, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. J Med Chem, 2020, 63(16): 8749-8760. doi: 10.1021/acs.jmedchem.9b00959
    [28]
    Marín M, López M, Gallego-Yerga L, et al. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: a paradigm shift[J]? Med Res Rev, 2024, 44(3): 1055-1120. doi: 10.1002/med.22005
    [29]
    Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock[J]. J Mol Recognit, 1996, 9(1): 1-5. doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
    [30]
    Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock vina 1.2. 0: new docking methods, expanded force field, and python bindings[J]. J Chem Inf Model, 2021, 61(8): 3891-3898. doi: 10.1021/acs.jcim.1c00203
    [31]
    Wu YJ, Brooks III CL. Covalent docking in CDOCKER[J]. J Comput Aided Mol Des, 2022, 36(8): 563-574. doi: 10.1007/s10822-022-00472-3
    [32]
    Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy[J]. J Med Chem, 2004, 47(7): 1739-1749. doi: 10.1021/jm0306430
    [33]
    Miyamoto Y, Yamauchi J, Sanbe A, et al. Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth[J]. Exp Cell Res, 2007, 313(4): 791-804. doi: 10.1016/j.yexcr.2006.11.017
    [34]
    David L, Mdahoma A, Singh N, et al. A toolkit for covalent docking with GOLD: from automated ligand preparation with KNIME to bound protein-ligand complexes[J]. Bioinform Adv, 2022, 2(1): vbac090. doi: 10.1093/bioadv/vbac090
    [35]
    Cross SSJ. Improved FlexX docking using FlexS-determined base fragment placement[J]. J Chem Inf Model, 2005, 45(4): 993-1001. doi: 10.1021/ci050026f
    [36]
    Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS[J]. Nucleic Acids Res, 2011, 39(Web Server issue): W270-W277.
    [37]
    Kaur T, Madgulkar A, Bhalekar M, et al. Molecular docking in formulation and development[J]. Curr Drug Discov Technol, 2019, 16(1): 30-39. doi: 10.2174/1570163815666180219112421
    [38]
    Huang YP, Zhang H, Jiang SY, et al. DSDP: a blind docking strategy accelerated by GPUs[J]. J Chem Inf Model, 2023, 63(14): 4355-4363. doi: 10.1021/acs.jcim.3c00519
    [39]
    B Fortela DL, Mikolajczyk AP, Carnes MR, et al. Predicting molecular docking of per- and polyfluoroalkyl substancesto blood protein using generative artificial intelligence algorithm DiffDock[J]. Biotechniques, 2024, 76(1): 14-26. doi: 10.2144/btn-2023-0070
    [40]
    Ryazantsev MN, Nikolaev DM, Struts AV, et al. Quantum mechanical and molecular mechanics modeling of membrane-embedded rhodopsins[J]. J Membr Biol, 2019, 252(4/5): 425-449.
    [41]
    Ding Y, Yu K, Huang J. Data science techniques in biomolecular force field development[J]. Curr Opin Struct Biol, 2023, 78: 102502. doi: 10.1016/j.sbi.2022.102502
    [42]
    Hollingsworth SA, Dror RO. Molecular dynamics simulation for all[J]. Neuron, 2018, 99(6): 1129-1143. doi: 10.1016/j.neuron.2018.08.011
    [43]
    Dheyab MA, Aziz AA, Rahman AA, et al. Monte Carlo simulation of gold nanoparticles for X-ray enhancement application[J]. Biochim Biophys Acta Gen Subj, 2023, 1867(4): 130318. doi: 10.1016/j.bbagen.2023.130318
    [44]
    Ruff KM, Pappu RV. AlphaFold and implications for intrinsically disordered proteins[J]. J Mol Biol, 2021, 433(20): 167208. doi: 10.1016/j.jmb.2021.167208
    [45]
    Loman TE, Ma YB, Ilin V, et al. Catalyst: fast and flexible modeling of reaction networks[J]. PLoS Comput Biol, 2023, 19(10): e1011530. doi: 10.1371/journal.pcbi.1011530
    [46]
    Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters[J]. J Chem Inf Model, 2005, 45(1): 160-169. doi: 10.1021/ci049885e
    [47]
    Benford D, Leblanc JC, Setzer RW. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: aflatoxin B1 (AFB1)[J]. Food Chem Toxicol, 2010, 48(Suppl 1): S34-S41.
    [48]
    Liu XF, Ouyang SS, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W609-W614.
    [49]
    Schneidman-Duhovny D, Dror O, Inbar Y, et al. PharmaGist: a webserver for ligand-based pharmacophore detection[J]. Nucleic Acids Res, 2008, 36(Web Server issue): W223-W228.
    [50]
    Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design: a review[J]. Curr Top Med Chem, 2010, 10(1): 95-115. doi: 10.2174/156802610790232260
    [51]
    Wang YL, Wang F, Shi XX, et al. Cloud 3D-QSAR: a web tool for the development of quantitative structure-activity relationship models in drug discovery[J]. Brief Bioinform, 2021, 22(4): bbaa276. doi: 10.1093/bib/bbaa276
    [52]
    Ataide Martins JP, Rougeth de Oliveira MA, Oliveira de Queiroz MS. Web-4D-QSAR: a web-based application to generate 4D-QSAR descriptors[J]. J Comput Chem, 2018, 39(15): 917-924. doi: 10.1002/jcc.25166
    [53]
    Zhu C, Li XW, Zhao BY, et al. Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy[J]. Eur J Med Chem, 2020, 193: 112214. doi: 10.1016/j.ejmech.2020.112214
    [54]
    Feng W, Wang LW, Lin ZY, et al. Generation of 3D molecules in pockets via a language model[J]. Nat Mach Intell, 2024, 6: 62-73. doi: 10.1038/s42256-023-00775-6
    [55]
    Qian H, Lin C, Zhao DW, et al. AlphaDrug: protein target specific de novo molecular generation[J]. PNAS Nexus, 2022, 1(4): pgac227. doi: 10.1093/pnasnexus/pgac227
    [56]
    Kosugi T, Ohue M. Quantitative estimate index for early-stage screening of compounds targeting protein-protein interactions[J]. Int J Mol Sci, 2021, 22(20): 10925. doi: 10.3390/ijms222010925
    [57]
    Creanza TM, Lamanna G, Delre P, et al. DeLA-drug: a deep learning algorithm for automated design of druglike analogues[J]. J Chem Inf Model, 2022, 62(6): 1411-1424. doi: 10.1021/acs.jcim.2c00205
    [58]
    Born J, Manica M. Regression Transformer enables concurrent sequence regression and generation for molecular language modelling[J]. Nat Mach Intell, 2023, 5(4): 432-444. doi: 10.1038/s42256-023-00639-z
    [59]
    Wang JK, Zeng YD, Sun HY, et al. Molecular generation with reduced labeling through constraint architecture[J]. J Chem Inf Model, 2023, 63(11): 3319-3327. doi: 10.1021/acs.jcim.3c00579
    [60]
    Du HY, Jiang DJ, Zhang O, et al. A flexible data-free framework for structure-based de novo drug design with reinforcement learning[J]. Chem Sci, 2023, 14(43): 12166-12181. doi: 10.1039/D3SC04091G
    [61]
    Liao ZR, Xie L, Mamitsuka H, et al. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer[J]. Bioinformatics, 2023, 39(1): btac814. doi: 10.1093/bioinformatics/btac814
    [62]
    Liu XH, Ye K, van Vlijmen HWT, et al. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning[J]. J Cheminf, 2023, 15(1): 24. doi: 10.1186/s13321-023-00694-z
    [63]
    Zhu HM, Zhou RY, Cao DS, et al. A pharmacophore-guided deep learning approach for bioactive molecular generation[J]. Nat Commun, 2023, 14(1): 6234. doi: 10.1038/s41467-023-41454-9
    [64]
    Imrie F, Hadfield TE, Bradley AR, et al. Deep generative design with 3D pharmacophoric constraints[J]. Chem Sci, 2021, 12(43): 14577-14589. doi: 10.1039/D1SC02436A
  • Related Articles

    [1]REN Weijie, CEN Lifang, ZOU Yi. Research progress of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of inflammatory and immune-mediated diseases[J]. Journal of China Pharmaceutical University, 2024, 55(1): 63-72. DOI: 10.11665/j.issn.1000-5048.2023121103
    [2]YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615
    [3]BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403
    [4]ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203
    [5]YUAN Zhong, CHEN Zhuo, LI Qianbin, HU Gaoyun. Advances in research of protein tyrosine phosphatase 1B and its inhibitors[J]. Journal of China Pharmaceutical University, 2018, 49(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20180101
    [6]LI Tonghui, GUO Hao, LU Tao, WANG Yue, LU Shuai, TANG Weifang. Advances in the research of FLT3 inhibitors for acute myeloid leukemia[J]. Journal of China Pharmaceutical University, 2015, 46(2): 153-161. DOI: 10.11665/j.issn.1000-5048.20150203
    [7]ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102
    [8]HUANG Fei, ZHU Haijing, ZHOU Xiang, LU Tao, JIAO Yu, TANG Weifang. Progress of Bruton′s tyrosine kinase(BTK)and its inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(6): 617-624. DOI: 10.11665/j.issn.1000-5048.20140602
    [9]ZHU Yaqi, YAN Fang, DI Bin, YAN Jia, LI Jiachang, LI Yunman. Inhibiting effect of emodin on adriamycin-resistance of K562/ADM cell line[J]. Journal of China Pharmaceutical University, 2014, 45(4): 462-468. DOI: 10.11665/j.issn.1000-5048.20140414
    [10]DONG Gaochao, ZHOU Xiang, TANG Weifang, LU Tao. Advances in the research and development of B-Raf inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20140101

Catalog

    Article views (490) PDF downloads (130) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return