Citation: | HUANG Weiguo, JIANG Weikai, SHAO Yuwei, et al. Reward effect of flubromazolam and its underlying neural circuit mechanism[J]. J China Pharm Univ, 2024, 55(3): 390 − 396. DOI: 10.11665/j.issn.1000-5048.2024030401 |
Flubromazolam (Flub) is a novel psychoactive substance of benzodiazepines and the mechanism underlying its addiction still remains elusive. This study investigated the reward effect of Flub using conditioned place preference (CPP) mouse model. The neuronal activity was evaluated by c-Fos expression, and the neural circuit was tracked by virus tracing. This study also investigated the regulatory effect of neural circuits on Flub-induced reward effects through chemogenetic approach. The results showed that, at the dose of 3 mg/kg, Flub significantly increased CPP score and c-Fos expression in dopaminergic (DA) neurons of ventral tegmental area (VTA). Inhibition of VTA dopaminergic neuron activity dramatically decreased Flub-induced CPP score. Virus tracing verified GABAergic neuronal projection of medial rostrum tegmental nucleus (RMTg) to VTA dopaminergic neurons. Activation of RMTgGABA→VTADA circuit or blockade of benzodiazepine receptors (BZR) in RMTg significantly decreased Flub-induced CPP score. These results indicate that Flub produced reward effect via BZR-mediated RMTgGABA→VTADA circuit.
[1] |
Edinoff AN, Nix CA, Odisho AS, et al. Novel designer benzodiazepines: comprehensive review of evolving clinical and adverse effects[J]. Neurol Int, 2022, 14(3): 648-663. doi: 10.3390/neurolint14030053
|
[2] |
Huppertz LM, Bisel P, Westphal F, et al. Characterization of the four designer benzodiazepines clonazolam, deschloroetizolam, flubromazolam, and meclonazepam, and identification of their in vitro metabolites[J]. Forensic Toxicol, 2015, 33(2): 388-395. doi: 10.1007/s11419-015-0277-6
|
[3] |
Qian ZH, Yang HX, Liu CM. Rapid detection of designer benzodiazepine flubromazolam by GC-MS and UPLC-Q-TOF MS[J]. Chin J Anal Lab (分析试验室), 2018, 37(10): 1133-1136.
|
[4] |
U. S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2019 Annual Report. [R] Springfield, VA: U. S. Drug Enforcement Administration, 2020.
|
[5] |
U. S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2020 Annual Report. [R] Springfield, VA: U. S. Drug Enforcement Administration, 2021.
|
[6] |
U. S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2021 Annual Report. [R] Springfield, VA: U. S. Drug Enforcement Administration, 2022.
|
[7] |
Abdul K, Hikin L, Smith P, et al. Flubromazolam: detection in five post-mortem cases[J]. Med Sci Law, 2020, 60(4): 266-269. doi: 10.1177/0025802420950273
|
[8] |
Noble C, Mardal M, Bjerre Holm N, et al. In vitro studies on flubromazolam metabolism and detection of its metabolites in authentic forensic samples[J]. Drug Test Anal, 2017, 9(8): 1182-1191.
|
[9] |
Canfield JR, Kisor DF, Sprague JE. Designer benzodiazepine rat pharmacokinetics: a comparison of alprazolam, flualprazolam and flubromazolam[J]. Toxicol Appl Pharmacol, 2023, 465: 116459. doi: 10.1016/j.taap.2023.116459
|
[10] |
Huppertz LM, Moosmann B, Auwärter V. Flubromazolam–Basic pharmacokinetic evaluation of a highly potent designer benzodiazepine[J]. Drug Test Anal, 2018, 10(1): 206-211. doi: 10.1002/dta.2203
|
[11] |
Andersson M, Kjellgren A. The slippery slope of flubromazolam: experiences of a novel psychoactive benzodiazepine as discussed on a Swedish online forum[J]. Nordisk Alkohol Nark, 2017, 34(3): 217-229.
|
[12] |
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement[J]. Eur J Neurosci, 2019, 50(3): 2180-2200. doi: 10.1111/ejn.14160
|
[13] |
Tan KR, Brown M, Labouèbe G, et al. Neural bases for addictive properties of benzodiazepines[J]. Nature, 2010, 463(7282): 769-774. doi: 10.1038/nature08758
|
[14] |
Polter AM, Barcomb K, Tsuda AC, et al. Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons[J]. Eur J Neurosci, 2018, 47(10): 1208-1218. doi: 10.1111/ejn.13879
|
[15] |
Wu J, Cui RS, Sun CC, et al. Reward circuits and opioid addiction: the moderating effect of the rostromedial tegmental nucleus[J]. Adv Psychol Sci (心理科学进展), 2019, 27(1): 60-69.
|
[16] |
Zhao YN, Yan YD, Wang CY, et al. The rostromedial tegmental nucleus: anatomical studies and roles in sleep and substance addictions in rats and mice[J]. Nat Sci Sleep, 2020, 12: 1215-1223. doi: 10.2147/NSS.S278026
|
[17] |
Fu R, Zuo WH, Gregor D, et al. Pharmacological manipulation of the rostromedial tegmental nucleus changes voluntary and operant ethanol self-administration in rats[J]. Alcohol Clin Exp Res, 2016, 40(3): 572-582. doi: 10.1111/acer.12974
|
[18] |
Matsui A, Williams JT. Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons[J]. J Neurosci, 2011, 31(48): 17729-17735. doi: 10.1523/JNEUROSCI.4570-11.2011
|
[19] |
St Laurent R, Martinez Damonte V, Tsuda AC, et al. Periaqueductal gray and rostromedial tegmental inhibitory afferents to VTA have distinct synaptic plasticity and opiate sensitivity[J]. Neuron, 2020, 106(4): 624-636. e4.
|
[20] |
Khayat A, Yaka R. Activation of RMTg projections to the VTA reverse cocaine-induced molecular adaptation in the reward system[J]. Transl Psychiatry, 2024, 14(1): 40. doi: 10.1038/s41398-024-02763-9
|
[21] |
Jhou TC, Geisler S, Marinelli M, et al. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta[J]. J Comp Neurol, 2009, 513(6): 566-596. doi: 10.1002/cne.21891
|
[22] |
Jalabert M, Bourdy R, Courtin J, et al. Neuronal circuits underlying acute morphine action on dopamine neurons[J]. Proc Natl Acad Sci U S A, 2011, 108(39): 16446-16450. doi: 10.1073/pnas.1105418108
|
[1] | REN Weijie, CEN Lifang, ZOU Yi. Research progress of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of inflammatory and immune-mediated diseases[J]. Journal of China Pharmaceutical University, 2024, 55(1): 63-72. DOI: 10.11665/j.issn.1000-5048.2023121103 |
[2] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[3] | BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403 |
[4] | ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203 |
[5] | YUAN Zhong, CHEN Zhuo, LI Qianbin, HU Gaoyun. Advances in research of protein tyrosine phosphatase 1B and its inhibitors[J]. Journal of China Pharmaceutical University, 2018, 49(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20180101 |
[6] | LI Tonghui, GUO Hao, LU Tao, WANG Yue, LU Shuai, TANG Weifang. Advances in the research of FLT3 inhibitors for acute myeloid leukemia[J]. Journal of China Pharmaceutical University, 2015, 46(2): 153-161. DOI: 10.11665/j.issn.1000-5048.20150203 |
[7] | ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102 |
[8] | HUANG Fei, ZHU Haijing, ZHOU Xiang, LU Tao, JIAO Yu, TANG Weifang. Progress of Bruton′s tyrosine kinase(BTK)and its inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(6): 617-624. DOI: 10.11665/j.issn.1000-5048.20140602 |
[9] | ZHU Yaqi, YAN Fang, DI Bin, YAN Jia, LI Jiachang, LI Yunman. Inhibiting effect of emodin on adriamycin-resistance of K562/ADM cell line[J]. Journal of China Pharmaceutical University, 2014, 45(4): 462-468. DOI: 10.11665/j.issn.1000-5048.20140414 |
[10] | DONG Gaochao, ZHOU Xiang, TANG Weifang, LU Tao. Advances in the research and development of B-Raf inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20140101 |