Citation: | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. J China Pharm Univ, 2024, 55(3): 347 − 356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
Anticancer peptides (ACPs) have become a focal point of research due to their high efficacy, low toxicity, and high selectivity. Methods of ACP identification and design based on artificial intelligence (AI) surpass traditional experimental techniques in cost-efficiency, success rate, and the ability to investigate a broader sequence space. This article highlights the application of AI technology in the generation and identification of ACPs, including the exploration of new ACP design through deep generative models and ACP identification methods based on machine learning and deep learning. Furthermore, it discusses challenges in current research, such as insufficient model reproducibility and interpretability, and a lack of experimentally validated negative data. Future research directions are proposed to provide new insights for the development of anticancer peptides, aiming to enhance the understanding and development of ACPs.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[2] |
International Agency for Research on Cancer. Cancer Today[EB/OL]//gco. iarc. who. int. (2024-02-01)[2024-03-05].https://gco.iarc.who.int/today/en/dataviz/tables?mode=population&types=1.
|
[3] |
Han BF, Zheng RS, Zeng HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. doi: 10.1016/j.jncc.2024.01.006
|
[4] |
Norouzi P, Mirmohammadi M, Houshdar Tehrani MH. Anticancer peptides mechanisms, simple and complex[J]. Chem Biol Interact, 2022, 368: 110194. doi: 10.1016/j.cbi.2022.110194
|
[5] |
Manavalan B, Basith S, Shin TH, et al. MLACP: machine-learning-based prediction of anticancer peptides[J]. Oncotarget, 2017, 8(44): 77121-77136. doi: 10.18632/oncotarget.20365
|
[6] |
Huang YB, Wang XF, Wang HY, et al. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework[J]. Mol Cancer Ther, 2011, 10(3): 416-426. doi: 10.1158/1535-7163.MCT-10-0811
|
[7] |
Glukhov E, Burrows LL, Deber CM. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds[J]. Biopolymers, 2008, 89(5): 360-371. doi: 10.1002/bip.20917
|
[8] |
Xie MF, Liu DJ, Yang YF. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification[J]. Open Biol, 2020, 10(7): 200004. doi: 10.1098/rsob.200004
|
[9] |
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review)[J]. Int J Oncol, 2020, 57(3): 678-696. doi: 10.3892/ijo.2020.5099
|
[10] |
Muttenthaler M, King GF, Adams DJ, et al. Trends in peptide drug discovery[J]. Nat Rev Drug Discov, 2021, 20(4): 309-325. doi: 10.1038/s41573-020-00135-8
|
[11] |
Tyagi A, Tuknait A, Anand P, et al. CancerPPD: a database of anticancer peptides and proteins[J]. Nucleic Acids Res, 2015, 43(Database issue): D837-D843
|
[12] |
Faraji N, Arab SS, Doustmohammadi A, et al. ApInAPDB: a database of apoptosis-inducing anticancer peptides[J]. Sci Rep, 2022, 12(1): 21341. doi: 10.1038/s41598-022-25530-6
|
[13] |
Wang Z, Wang GS. APD: the antimicrobial peptide database[J]. Nucleic Acids Res, 2004, 32(Database issue): D590-D592
|
[14] |
Wang GS, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Res, 2016, 44(D1): D1087-D1093. doi: 10.1093/nar/gkv1278
|
[15] |
Novković M, Simunić J, Bojović V, et al. DADP: the database of anuran defense peptides[J]. Bioinformatics, 2012, 28(10): 1406-1407. doi: 10.1093/bioinformatics/bts141
|
[16] |
Pirtskhalava M, Amstrong AA, Grigolava M, et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics[J]. Nucleic Acids Res, 2021, 49(D1): D288-D297. doi: 10.1093/nar/gkaa991
|
[17] |
Shi GB, Kang XY, Dong FY, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides[J]. Nucleic Acids Res, 2022, 50(D1): D488-D496. doi: 10.1093/nar/gkab651
|
[18] |
Zhao XW, Wu HY, Lu HR, et al. LAMP: a database linking antimicrobial peptides[J]. PLoS One, 2013, 8(6): e66557. doi: 10.1371/journal.pone.0066557
|
[19] |
Kapoor P, Singh H, Gautam A, et al. TumorHoPe: a database of tumor homing peptides[J]. PLoS One, 2012, 7(4): e35187. doi: 10.1371/journal.pone.0035187
|
[20] |
Jhong JH, Yao LT, Pang YX, et al. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data[J]. Nucleic Acids Res, 2022, 50(D1): D460-D470. doi: 10.1093/nar/gkab1080
|
[21] |
Waghu FH, Barai RS, Gurung P, et al. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1094-D1097. doi: 10.1093/nar/gkv1051
|
[22] |
Piotto SP, Sessa L, Concilio S, et al. YADAMP: yet another database of antimicrobial peptides[J]. Int J Antimicrob Agents, 2012, 39(4): 346-351. doi: 10.1016/j.ijantimicag.2011.12.003
|
[23] |
Singh S, Chaudhary K, Dhanda SK, et al. SATPdb: a database of structurally annotated therapeutic peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1119-D1126. doi: 10.1093/nar/gkv1114
|
[24] |
Wang J, Yin TL, Xiao XW, et al. StraPep: a structure database of bioactive peptides[J]. Database, 2018, 2018: bay038.
|
[25] |
Das D, Jaiswal M, Khan FN, et al. PlantPepDB: a manually curated plant peptide database[J]. Sci Rep, 2020, 10(1): 2194. doi: 10.1038/s41598-020-59165-2
|
[26] |
Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics[J]. PLoS One, 2017, 12(7): e0181748. doi: 10.1371/journal.pone.0181748
|
[27] |
Li QL, Zhang C, Chen HJ, et al. BioPepDB: an integrated data platform for food-derived bioactive peptides[J]. Int J Food Sci Nutr, 2018, 69(8): 963-968. doi: 10.1080/09637486.2018.1446916
|
[28] |
Nielsen SD, Beverly RL, Qu YY, et al. Milk bioactive peptide database: a comprehensive database of milk protein-derived bioactive peptides and novel visualization[J]. Food Chem, 2017, 232: 673-682. doi: 10.1016/j.foodchem.2017.04.056
|
[29] |
Tyagi A, Kapoor P, Kumar R, et al. In silico models for designing and discovering novel anticancer peptides[J]. Sci Rep, 2013, 3: 2984. doi: 10.1038/srep02984
|
[30] |
Hajisharifi Z, Piryaiee M, Mohammad Beigi M, et al. Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test[J]. J Theor Biol, 2014, 341: 34-40. doi: 10.1016/j.jtbi.2013.08.037
|
[31] |
Vijayakumar S, Ptv L. ACPP: a web server for prediction and design of anti-cancer peptides[J]. Int J Pept Res Ther, 2015, 21(1): 99-106. doi: 10.1007/s10989-014-9435-7
|
[32] |
Chen W, Ding H, Feng PM, et al. iACP: a sequence-based tool for identifying anticancer peptides[J]. Oncotarget, 2016, 7(13): 16895-16909. doi: 10.18632/oncotarget.7815
|
[33] |
Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences to reduce the size of large protein databases[J]. Bioinformatics, 2001, 17(3): 282-283. doi: 10.1093/bioinformatics/17.3.282
|
[34] |
Bond-Taylor S, Leach A, Long Y, et al. Deep generative modelling: a comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models[EB/OL]. arXiv, 2021: 2103.04922. http://arxiv.org/abs/2103.04922.
|
[35] |
Müller AT, Hiss JA, Schneider G. Recurrent neural network model for constructive peptide design[J]. J Chem Inf Model, 2018, 58(2): 472-479. doi: 10.1021/acs.jcim.7b00414
|
[36] |
Wan FP, Kontogiorgos-Heintz D, de la Fuente-Nunez C. Deep generative models for peptide design[J]. Digit Discov, 2022, 1(3): 195-208. doi: 10.1039/D1DD00024A
|
[37] |
Grisoni F, Neuhaus CS, Gabernet G, et al. Designing anticancer peptides by constructive machine learning[J]. ChemMedChem, 2018, 13(13): 1300-1302. doi: 10.1002/cmdc.201800204
|
[38] |
Rossetto A, Zhou WJ. GANDALF: peptide generation for drug design using sequential and structural generative adversarial networks[C]//Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Virtual Event USA. ACM, 2020. doi: 10.1145/3388440.3412487.
|
[39] |
Madani A, McCann B, Naik N, et al. ProGen: language modeling for protein generation[EB/OL].arXiv, 2020: 2004.03497. http://arxiv.org/abs/2004.03497.
|
[40] |
Nijkamp E, Ruffolo JA, Weinstein EN, et al. ProGen2: exploring the boundaries of protein language models[J]. Cell Syst, 2023, 14(11): 968-978. e3.
|
[41] |
Ferruz N, Schmidt S, Höcker B. ProtGPT2 is a deep unsupervised language model for protein design[J]. Nat Commun, 2022, 13(1): 4348. doi: 10.1038/s41467-022-32007-7
|
[42] |
Chen B, Cheng XY, Li P, et al. xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein[EB/OL].arXiv, 2024: 2401.06199. http://arxiv.org/abs/2401.06199.
|
[43] |
Basith S, Manavalan B, Hwan Shin T, et al. Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening[J]. Med Res Rev, 2020, 40(4): 1276-1314. doi: 10.1002/med.21658
|
[44] |
Liang X, Li FY, Chen JX, et al. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification[J]. Brief Bioinform, 2021, 22(4): bbaa312. doi: 10.1093/bib/bbaa312
|
[45] |
Hwang JS, Kim SG, Shin TH, et al. Development of anticancer peptides using artificial intelligence and combinational therapy for cancer therapeutics[J]. Pharmaceutics, 2022, 14(5): 997. doi: 10.3390/pharmaceutics14050997
|
[46] |
Agrawal P, Bhagat D, Mahalwal M, et al. AntiCP 2.0: an updated model for predicting anticancer peptides[J]. Brief Bioinform, 2021, 22(3): bbaa153. doi: 10.1093/bib/bbaa153
|
[47] |
Rao B, Zhou C, Zhang GY, et al. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides[J]. Brief Bioinform, 2020, 21(5): 1846-1855. doi: 10.1093/bib/bbz088
|
[48] |
Boopathi V, Subramaniyam S, Malik A, et al. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides[J]. Int J Mol Sci, 2019, 20(8): 1964. doi: 10.3390/ijms20081964
|
[49] |
Wei LY, Zhou C, Chen HR, et al. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides[J]. Bioinformatics, 2018, 34(23): 4007-4016. doi: 10.1093/bioinformatics/bty451
|
[50] |
Yi HC, You ZH, Zhou X, et al. ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation[J]. Mol Ther Nucleic Acids, 2019, 17: 1-9.
|
[51] |
He WJ, Wang Y, Cui LZ, et al. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides[J]. Bioinformatics, 2021, 37(24): 4684-4693. doi: 10.1093/bioinformatics/btab560
|
[52] |
Wang HQ, Zhao J, Zhao H, et al. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model[J]. BMC Bioinformatics, 2021, 22(1): 512. doi: 10.1186/s12859-021-04433-9
|
[53] |
Guo YC, Yan K, Lv HW, et al. PreTP-EL: prediction of therapeutic peptides based on ensemble learning[J]. Brief Bioinform, 2021, 22(6): bbab358. doi: 10.1093/bib/bbab358
|
[54] |
Yan K, Lv HW, Wen J, et al. PreTP-stack: prediction of therapeutic peptides based on the stacked ensemble learing[J]. IEEE/ACM Trans Comput Biol Bioinform, 2023, 20(2): 1337-1344. doi: 10.1109/TCBB.2022.3183018
|
[55] |
Deng H, Ding M, Wang YM, et al. ACP-MLC: a two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types[J]. Comput Biol Med, 2023, 158: 106844. doi: 10.1016/j.compbiomed.2023.106844
|
[56] |
Zhong GL, Deng L. ACPScanner: prediction of anticancer peptides by integrated machine learning methodologies[J]. J Chem Inf Model, 2024, 64(3): 1092-1104. doi: 10.1021/acs.jcim.3c01860
|
[1] | REN Weijie, CEN Lifang, ZOU Yi. Research progress of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of inflammatory and immune-mediated diseases[J]. Journal of China Pharmaceutical University, 2024, 55(1): 63-72. DOI: 10.11665/j.issn.1000-5048.2023121103 |
[2] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[3] | BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403 |
[4] | ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203 |
[5] | YUAN Zhong, CHEN Zhuo, LI Qianbin, HU Gaoyun. Advances in research of protein tyrosine phosphatase 1B and its inhibitors[J]. Journal of China Pharmaceutical University, 2018, 49(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20180101 |
[6] | LI Tonghui, GUO Hao, LU Tao, WANG Yue, LU Shuai, TANG Weifang. Advances in the research of FLT3 inhibitors for acute myeloid leukemia[J]. Journal of China Pharmaceutical University, 2015, 46(2): 153-161. DOI: 10.11665/j.issn.1000-5048.20150203 |
[7] | ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102 |
[8] | HUANG Fei, ZHU Haijing, ZHOU Xiang, LU Tao, JIAO Yu, TANG Weifang. Progress of Bruton′s tyrosine kinase(BTK)and its inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(6): 617-624. DOI: 10.11665/j.issn.1000-5048.20140602 |
[9] | ZHU Yaqi, YAN Fang, DI Bin, YAN Jia, LI Jiachang, LI Yunman. Inhibiting effect of emodin on adriamycin-resistance of K562/ADM cell line[J]. Journal of China Pharmaceutical University, 2014, 45(4): 462-468. DOI: 10.11665/j.issn.1000-5048.20140414 |
[10] | DONG Gaochao, ZHOU Xiang, TANG Weifang, LU Tao. Advances in the research and development of B-Raf inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20140101 |