• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
XUE Chunling, ZHUGE Yuanli, ZENG Jingxia. Improved effect of curcumin on mitochondrial dysfunction induced by high glucose in L6 cells[J]. Journal of China Pharmaceutical University, 2016, 47(3): 342-347. DOI: 10.11665/j.issn.1000-5048.20160316
Citation: XUE Chunling, ZHUGE Yuanli, ZENG Jingxia. Improved effect of curcumin on mitochondrial dysfunction induced by high glucose in L6 cells[J]. Journal of China Pharmaceutical University, 2016, 47(3): 342-347. DOI: 10.11665/j.issn.1000-5048.20160316

Improved effect of curcumin on mitochondrial dysfunction induced by high glucose in L6 cells

More Information
  • To investigate the effects of curcumin on mitochondrial dysfunction induced by high glucose(40 mmol/L glucose, 24 h)in L6 cells, curcumin(10, 20, 40 μmol/L)was administered for 24 h after high glucose culture. The effects of curcumin on the mitochondrial dysfunction were evaluated by mitochondrial membrane potential, reactive oxygen species(ROS), ATP content and mtDNA copy number. The mRNA and protein expression of uncoupling protein 2(UCP2), PPARγ coactivator 1α(PGC-1α)and sirtuin-1(Sirt3)were also determined. As improvement of high glucose damage, curcumin significantly raised mitochondrial membrane potential and ATP content, and decreased ROS level. Curcumin significantly ameliorated the down regulation of UCP2 yet with little effect on mtDNA copy number and PGC-1α and Sirt3 expression. In conclusion, curcumin could significantly ameliorate mitochondrial dysfunction in L6 cells induced by high glucose, which involved the mechanism of multiple antioxidants.
  • [1]
    Patti ME,Corvera S.The role of mitochondria in the pathogenesis of type 2 diabetes[J].Endocr Rev,2010,31(3):364-395.
    [2]
    Sivitz WI,Yorek MA.Mitochondrial dysfunction in diabetes:from molecular mechanisms to functional significance and therapeutic opportunities[J].Antioxid Redox Signal,2010,12(4):537-577.
    [3]
    Badin PM,Langin D,Moro C.Dynamics of skeletal muscle lipid pools[J].Trends Endocrinol Metab,2013,24(12):607-615.
    [4]
    Kelley DE,He J,Menshikova EV,et al.Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes[J].Diabetes,2002,51(10):2944-2950.
    [5]
    Liu ZH,Yu W,Liu C,et al.Protective effect of curcumin on myocardium in diabetic rats[J].Chin J Pathophysiol(中国病理生理杂志),2014,30(4):725-728.
    [6]
    Wang ZF,Zhong L.Experimental study on the effects of curcumin on diabetes in rats[J].Chinese J Appl Physiol(中国应用生理学杂志),2014,30(1):66-69.
    [7]
    Li X,Xu ZM,Jiang ZZ,et al.Hypoglycemic effect of catalpol on high-fat diet/streptozotocin-induced diabetic mice by increasing skeletal muscle mitochondrial biogenesis[J].Acta Biochim Biophys Sin,2014,46(7):738-748.
    [8]
    Uo JJ,Chang HH,Tsai TH,et al.Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis[J].Int J Mol Med,2012,30(3):673-679.
    [9]
    Romano AD, Greco E, Vendemiale G, et al. Bioenergetics and mitochondrial dysfunction in aging:recent insights for a therapeutical approach[J].Curr Pharm Design,2014,20(18):2978-2992.
    [10]
    Newsholme P,Haber EP,Hirabara SM,et al.Diabetes associated cell stress and dysfunction:role of mitochondrial and non-mitochondrial ROS production and activity[J].J Physiol,2007,583(Pt 1):9-24.
    [11]
    Zephy D,Ahmad J.Type 2 diabetes mellitus:Role of melatonin and oxidative stress[J].Diabetes Metab Synd,2015,9(2):127-131.
    [12]
    Yoon Y,Galloway CA,Jhun BS,et al.Mitochondrial dynamics in diabetes[J].Antioxid Redox Signal,2011,14(3):429-457.
    [13]
    Liesa M,Shirihai OS.Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure[J].Cell Metab,2013,17(4):491-506.
    [14]
    Collins S,Pi J,Yehuda-Shnaidman E.Uncoupling and reactive oxygen species(ROS)—a double-edged sword for β-cell function? “Moderation in all things”[J].Best Pract Res Clin Endocrinol Metab,2012,26(6):753-758.
    [15]
    Liu C,Lin JD.PGC-1 coactivators in the control of energy metabolism[J].Acta Biochim Biophys Sin,2011,43(4):248-257.
    [16]
    Park SH,Ozden O,Jiang H,et al.Sirt3,mitochondrial ROS,ageing,and carcinogenesis[J].Int J Mol Sci,2011,12(9):6226-6239.
  • Related Articles

    [1]YAN Li, JU Fengyu, SHEN Xin, YU Ye, WANG Wenhui. Research progress of acetylation in the pathogenesis of MASLD[J]. Journal of China Pharmaceutical University, 2025, 56(1): 31-39. DOI: 10.11665/j.issn.1000-5048.2024030103
    [2]HU Zhaoliang, ZOU Wenyu, SONG Min, HANG Taijun, LU Yuting. Correlation between in-vivo mercury exposure from Cinnabaris and memory disorders in juvenile rat[J]. Journal of China Pharmaceutical University, 2023, 54(4): 483-489. DOI: 10.11665/j.issn.1000-5048.2023042603
    [3]CHEN Yanqing, GONG Ping, LIU Zhen, ZHANG Yan, YU Yang. Serum amyloid A 3 deficiency improves cognitive impairment and attenuates tau pathology in mouse model of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2021, 52(5): 586-595. DOI: 10.11665/j.issn.1000-5048.20210511
    [4]FAN Wenxiang, LI Xiaomin, XU Chi. Effects of S-oxiracetam on learning and memory impairment in mice[J]. Journal of China Pharmaceutical University, 2021, 52(1): 77-83. DOI: 10.11665/j.issn.1000-5048.20210111
    [5]DUAN Lanlan, DONG Jing, FAN Xiangcheng, ZHU Junyi, ZHANG Yifan, HAN Jichun, SHANG Jing. β-Elemene improves endothelial cells dysfunction, and abnormal proliferation and migration of vascular smooth muscle cells[J]. Journal of China Pharmaceutical University, 2020, 51(3): 333-339. DOI: 10.11665/j.issn.1000-5048.20200311
    [6]ZHAO Mengqi, LIAO Hong. Researches progress of the relationship between neuro-inflammation and cognitive function[J]. Journal of China Pharmaceutical University, 2019, 50(4): 497-504. DOI: 10.11665/j.issn.1000-5048.20190416
    [7]ZHU Chengyan, LIU Haochen, HE Hua, LIU Xiaoquan. Evaluating cerebral endothelial dysfunction induced by amyloid based on the time series model[J]. Journal of China Pharmaceutical University, 2018, 49(4): 456-462. DOI: 10.11665/j.issn.1000-5048.20180411
    [8]LIU Li-na, SUN Zhi-guang, CAI Xue-ting, CAO Peng, LU Yin, SHAO Ming, CHEN Guang-mei, SHI Hui-lian. Quercetin improves TNF-α induced intestinal barrier dysfunction in Caco-2 cells[J]. Journal of China Pharmaceutical University, 2012, 43(6): 541-545.
    [9]ZHANG Guo-lin, XU Ming, DAI De-zai, XI Tao, DAI Yin. Endothelin-NADPH oxidase mediates cardiomyocytes dysfunction caused by H2O2 and interventions by CPU0213[J]. Journal of China Pharmaceutical University, 2011, 42(5): 452-457.
    [10]Reducing L-Thyroxine Cardiac Hypertrophy and Suppressing Mitochon-drial Calcium Pump by Propranolol,Verapamil and Captopril[J]. Journal of China Pharmaceutical University, 1996, (1): 47+44-47.

Catalog

    Article views (1244) PDF downloads (2177) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return