高级检索
蒋晓梅, 刘翀. 甘草甜素对糖尿病视网膜病变的神经保护作用[J]. 中国药科大学学报, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610
引用本文: 蒋晓梅, 刘翀. 甘草甜素对糖尿病视网膜病变的神经保护作用[J]. 中国药科大学学报, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610
JIANG Xiaomei, LIU Chong. Neuroprotective effect of glycyrrhizin on diabetic retinopathy[J]. Journal of China Pharmaceutical University, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610
Citation: JIANG Xiaomei, LIU Chong. Neuroprotective effect of glycyrrhizin on diabetic retinopathy[J]. Journal of China Pharmaceutical University, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610

甘草甜素对糖尿病视网膜病变的神经保护作用

Neuroprotective effect of glycyrrhizin on diabetic retinopathy

  • 摘要: 为探索甘草甜素(glycyrrhizin,GL)对糖尿病视网膜病变(diabetic retinopathy,DR)的潜在抗炎作用和视网膜神经保护作用,21只雄性C57BL/6小鼠随机分为对照组(Control)、模型组(Model)、甘草甜素(GL)组。采用STZ腹腔注射建立糖尿病小鼠模型。GL组在建模后用GL(150 mg/kg/d)灌胃治疗6周。视网膜组织切片,石蜡包埋,用苏木精-伊红(HE)进行形态学检查。免疫组化检测组织GLUT1、GFAP和GAP43表达,RT-PCR检测视网膜炎症和凋亡介质的表达(TNF-α、IL6、iNOS、NF-κB和Tp53)。结果显示,糖尿病小鼠视网膜发育紊乱,视网膜层衰弱,胶质细胞增生标志物GFAP表达上调,神经元可塑性标志物GAP43表达下调;糖尿病小鼠视网膜上的NF-κB、TNF-α、IL6、iNOS和Tp53转录增加。GL组减轻了糖尿病小鼠视网膜上的GLUT1表达的下调程度,视网膜炎症消除,且结构有所改善。上述结果提示GL可能对糖尿病患者具有神经保护和抗炎作用,但其对DR患者是否有效安全需要进一步的临床研究证实。

     

    Abstract: To explore the potential anti-inflammatory effects and retinal neuroprotective effects of glycyrrhizin (GL) on diabetic retinopathy (DR),twenty-one male C57BL/6 mice were randomly divided into control group,model group and glycyrrhizin (GL) group. The diabetic mice model was established by intraperitoneal injection of STZ. The GL group was treated with GL (150 mg/kg/d) by gavage for 6 weeks after modeling. Retinal tissue sections were paraffin-embedded and morphological examinated with hematoxylin-eosin (HE). Immunohistochemistry was used to detect the expression of GLUT1,GFAP and GAP43. RT-PCR was adopted to detect retinal inflammation and expression of apoptotic mediators (TNF-α,IL6,iNOS,NF-κB and Tp53). The results showed that the diabetic mice developed retinal disorders and retinal degeneration. The expression of glial cell proliferation marker GFAP was up-regulated,while the expression of neuronal plasticity marker GAP43 was down-regulated;NF-κB,TNF-α,IL6,iNOS and Tp53 transcription in the retina of diabetic mice increased. In the GL group,the degree of down-regulation of GLUT1 expression in the retina of diabetic mice was reduced,retinal inflammation was eliminated and the structure was improved. The above results suggested that GL may be a potential neuroprotective agent for diabetic patients and has anti-inflammatory effects,but its efficacy and safety in DR patients requires further clinical studies.

     

/

返回文章
返回