• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

葡萄糖氧化酶介导的智能响应胰岛素递送的研究进展

杨静如, 马俞宏, 黄德春, 钱红亮, 陈维

杨静如, 马俞宏, 黄德春, 钱红亮, 陈维. 葡萄糖氧化酶介导的智能响应胰岛素递送的研究进展[J]. 中国药科大学学报, 2021, 52(6): 663-674. DOI: 10.11665/j.issn.1000-5048.20210603
引用本文: 杨静如, 马俞宏, 黄德春, 钱红亮, 陈维. 葡萄糖氧化酶介导的智能响应胰岛素递送的研究进展[J]. 中国药科大学学报, 2021, 52(6): 663-674. DOI: 10.11665/j.issn.1000-5048.20210603
YANG Jingru, MA Yuhong, HUANG Dechun, QIAN Hongliang, CHEN Wei. Progress of intelligent-responsive insulin delivery mediated by glucose oxidase[J]. Journal of China Pharmaceutical University, 2021, 52(6): 663-674. DOI: 10.11665/j.issn.1000-5048.20210603
Citation: YANG Jingru, MA Yuhong, HUANG Dechun, QIAN Hongliang, CHEN Wei. Progress of intelligent-responsive insulin delivery mediated by glucose oxidase[J]. Journal of China Pharmaceutical University, 2021, 52(6): 663-674. DOI: 10.11665/j.issn.1000-5048.20210603

葡萄糖氧化酶介导的智能响应胰岛素递送的研究进展

基金项目: 国家自然科学基金资助项目(No.51973233)

Progress of intelligent-responsive insulin delivery mediated by glucose oxidase

Funds: This study was supported by the National Natural Science Foundation of China (No.51973233)
  • 摘要: 外源性胰岛素的递送对于1型和晚期2型糖尿病的治疗至关重要。传统的注射式给药易引发低血糖,而智能胰岛素系统具有安全、长效、高响应性等优点。葡萄糖氧化酶(glucose oxidase,GOx)能够消耗O2,催化葡萄糖生成葡萄糖酸和H2O2,因此GOx系统的O2水平、H2O2含量及pH大小与系统中的葡萄糖水平密切相关。本文总结了近年关于GOx在闭环胰岛素递送系统中的应用,按照机制分为pH响应、缺氧响应、H2O2响应的单一响应及多重响应,并探讨了GOx在未来应用方面所面临的机遇与挑战。
    Abstract: The delivery of exogenous insulin is very important for the treatment of type 1 and advanced type 2 diabetes.Traditional injectable administration is prone to cause hypoglycemia, while the intelligent insulin system has the advantages of safety, long-term effectiveness, and high responsiveness.Glucose oxidase (GOx) can consume O2 and catalyze glucose to produce gluconic acid and H2O2.Therefore, the O2 level, H2O2 content and pH of GOx system are closely related to the glucose level in the system.This review introduces the application of GOx in closed-loop insulin delivery systems at home and abroad in recent years, which can be divided into single response and multiple response of pH-response, hypoxia-response, and H2O2-response according to the mechanism.It also discusses the opportunities and challenge facing by the application of GOx in the future.
  • [1] . J China Pharm Univ (中国药科大学学报),2011,42(2):97-106.
    [2] van Dieren S,Beulens JWJ,van der Schouw YT,et al. The global burden of diabetes and its complications:an emerging pandemic[J]. Eur J Cardiovasc Prev Rehabilitation,2010,17(Suppl 1):S3-S8.
    [3] Frizziero L,Calciati A,Torresin T,et al. Diabetic macular edema treated with 577-nm subthreshold micropulse laser:a real-life,long-term study[J]. J Pers Med,2021,11(5):405.
    [4] Ma RJ,Shi LQ. Phenylboronic acid-based glucose-responsive polymeric nanoparticles:synthesis and applications in drug delivery[J]. Polym Chem,2014,5(5):1503-1518.
    [5] Li CY,Huang WL,Qian H. Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J]. J China Pharm Univ (中国药科大学学报),2018,49(6):660-670.
    [6] Chai ZH,Dong HY,Sun XY,et al. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice[J]. Int J Biol Macromol,2020,159:640-647.
    [7] Mo R,Jiang TY,Di J,et al. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery[J]. Chem Soc Rev,2014,43(10):3595-3629.
    [8] Wang J,Wang Z,Yu J,et al. Glucose-responsive insulin and delivery systems:innovation and translation[J]. Adv Mater,2020,32(13):e1902004.
    [9] Ravaine V,Ancla C,Catargi B. Chemically controlled closed-loop insulin delivery[J]. J Control Release,2008,132(1):2-11.
    [10] Wu Q,Wang L,Yu H,et al. Organization of glucose-responsive systems and their properties[J]. Chem Rev,2011,111(12):7855-7875.
    [11] Zhao L,Wang L,Zhang Y,et al. Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment[J]. Polymers (Basel),2017,9(7). DOI:10.3390/polym9070255.
    [12] Zhang M,Song CC,Du FS,et al. Supersensitive oxidation-responsive biodegradable PEG hydrogels for glucose-triggered insulin delivery[J]. ACS Appl Mater Interfaces,2017,9(31):25905-25914.
    [13] Dong Y,Wang W,Veiseh O,et al. Injectable and glucose-responsive hydrogels based on boronic acid-glucose complexation[J]. Langmuir,2016,32(34):8743-8747.
    [14] Liu XY,Li C,Lv J,et al. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin[J]. ACS Appl Bio Mater,2020,3(3):1598-1606.
    [15] Gordijo CR,Koulajian K,Shuhendler AJ,et al. Nanotechnology-enabled closed loop insulin delivery device:in vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control[J]. Adv Funct Mater,2011,21(1):73-82.
    [16] Wu Z,Zhang S,Zhang X,et al. Phenylboronic acid grafted chitosan as a glucose-sensitive vehicle for controlled insulin release[J]. J Pharm Sci,2011,100(6):2278-2286.
    [17] Gu Z,Dang TT,Ma M,et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery[J]. ACS Nano,2013,7(8):6758-6766.
    [18] Anirudhan TS,Nair AS,Nair SS. Enzyme coated beta-cyclodextrin for effective adsorption and glucose-responsive closed-loop insulin delivery[J]. Int J Biol Macromol,2016,91:818-827.
    [19] Kim MY,Kim J. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery[J]. ACS Biomater Sci Eng,2017,3(4):572-578.
    [20] Di J,Yu JC,Ye YQ,et al. Engineering synthetic insulin-secreting cells using hyaluronic acid microgels integrated with glucose-responsive nanoparticles[J]. Cell Mol Bioeng,2015,8(3):445-454.
    [21] Fu Y,Liu W,Wang LY,et al. Erythrocyte-membrane-camouflaged nanoplatform for intravenous glucose-responsive insulin delivery[J]. Adv Funct Mater,2018,28(41):1802250.
    [22] Mohammadpour F,Hadizadeh F,Tafaghodi M,et al. Preparation,in vitro and in vivo evaluation of PLGA/chitosan based nano-complex as a novel insulin delivery formulation[J]. Int J Pharm,2019,572:118710.
    [23] Gu Z,Aimetti AA,Wang Q,et al. Injectable nano-network for glucose-mediated insulin delivery[J]. ACS Nano,2013,7(5):4194-4201.
    [24] Zhao L,Xiao C,Wang L,et al. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery[J]. Chem Commun (Camb),2016,52(49):7633-7652.
    [25] Zhou X,Wu H,Long R,et al. Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation[J]. J Nanobiotechnology,2020,18(1):96.
    [26] Tai W,Mo R,Di J,et al. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin[J]. Biomacromolecules,2014,15(10):3495-3502.
    [27] Zhou K,Wang Y,Huang X,et al. Tunable,ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells[J]. Angew Chem Int Ed Engl,2011,50(27):6109-6114.
    [28] Luo FQ,Chen GJ,Xu W,et al. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery[J]. Nano Res,2021,14(8):2689-2696.
    [29] Tong ZZ,Zhou JY,Huang RS,et al. Dual-responsive supramolecular self-assembly of inclusion complex of an azobenzene-ended poly(ε-caprolactone) with a water-soluble pillar[6]Arene and its application in controlled drug release[J]. J Polym Sci Part A:Polym Chem,2017,55(15):2477-2482.
    [30] Zuo M,Qian W,Xu Z,et al. Multiresponsive supramolecular theranostic nanoplatform based on pillar[5]Arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery[J]. Small,2018,14(38):e1801942.
    [31] Lin YH,Hu W,Bai XW,et al. Glucose- and pH-responsive supramolecular polymer vesicles based on host-guest interaction for transcutaneous delivery of insulin[J]. ACS Appl Bio Mater,2020,3(9):6376-6383.
    [32] Ma RJ,Sun XC,Liu XJ,et al. Complex micelles with glucose-responsive shells for self-regulated release of glibenclamide[J]. Aust J Chem,2014,67(1):127.
    [33] Gaballa H,Theato P. Glucose-responsive polymeric micelles via boronic acid-diol complexation for insulin delivery at neutral pH[J]. Biomacromolecules,2019,20(2):871-881.
    [34] Li X,Shang H,Wu W,et al. Glucose-responsive micelles for controlled insulin release based on transformation from amphiphilic to double hydrophilic[J]. J Nanosci Nanotechnol,2016,16(6):5457-5463.
    [35] Chen Y,Li P,Modica JA,et al. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery:protein encapsulation,protection,and release[J]. J Am Chem Soc,2018,140(17):5678-5681.
    [36] Zhang C,Hong S,Liu MD,et al. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery[J]. J Control Release,2020,320:159-167.
    [37] Yang XX,Feng P,Cao J,et al. Composition-engineered metal-organic framework-based microneedles for glucose-mediated transdermal insulin delivery[J]. ACS Appl Mater Interfaces,2020,12(12):13613-13621.
    [38] Jamwal S,Ram B,Ranote S,et al. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery[J]. Int J Biol Macromol,2019,123:968-978.
    [39] Zhang G,Ji Y,Li X,et al. Polymer-covalent organic frameworks composites for glucose and pH dual-responsive insulin delivery in mice[J]. Adv Healthc Mater,2020,9(14):e2000221.
    [40] Chen WH,Luo GF,Vázquez-González M,et al. Glucose-responsive metal-organic-framework nanoparticles act as "Smart" sense-and-treat carriers [J]. ACS Nano,2018,12(8):7538-7545.
    [41] Patel A,Sant S. Hypoxic tumor microenvironment:opportunities to develop targeted therapies[J]. Biotechnol Adv,2016,34(5):803-812.
    [42] Thambi T,Deepagan VG,Yoon HY,et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery[J]. Biomaterials,2014,35(5):1735-1743.
    [43] Yu JC,Qian CG,Zhang YQ,et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery[J]. Nano Lett,2017,17(2):733-739.
    [44] Yu JC,Zhang YQ,Ye YQ,et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery[J]. Proc Natl Acad Sci USA,2015,112(27):8260-8265.
    [45] Thambi T,Deepagan VG,Yoon HY,et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery[J]. Biomaterials,2014,35(5):1735-1743.
    [46] Matsumoto A,Ishii T,Nishida J,et al. A synthetic approach toward a self-regulated insulin delivery system[J]. Angew Chem Int Ed Engl,2012,51(9):2124-2128.
    [47] Bratlie KM,York RL,Invernale MA,et al. Materials for diabetes therapeutics[J]. Adv Healthc Mater,2012,1(3):267-284.
    [48] Ye YQ,Yu JC,Wang C,et al.Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery [J]. Adv Mater,2016,28(16):3115-3121.
    [49] Yao Y,Zhao LY,Yang JJ,et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH[J]. Biomacromolecules,2012,13(6):1837-1844.
    [50] Wang J,Ye Y,Yu J,et al. Core-shell microneedle gel for self-regulated insulin delivery[J]. ACS Nano,2018,12(3):2466-2473.
    [51] Huang Q,Wang L,Yu H,et al. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy[J]. J Control Release,2019,305:50-64.
    [52] Hu XL,Yu JC,Qian CG,et al. H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery[J]. ACS Nano,2017,11(1):613-620.
    [53] Hei MY,Wu HJ,Fu Y,et al. Phenylboronic acid functionalized silica nanoparticles with enlarged ordered mesopores for efficient insulin loading and controlled release[J]. J Drug Deliv Sci Technol,2019,51:320-326.
    [54] Xu B,Jiang G,Yu W,et al. H2O2-Responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin[J]. J Mater Chem B,2017,5(41):8200-8208.
    [55] Yoshida K,Awaji K,Shimizu S,et al. Preparation of microparticles capable of glucose-induced insulin release under physiological conditions[J]. Polymers,2018,10(10):1164.
    [56] Tong ZZ,Zhou JY,Zhong JX,et al. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats[J]. ACS Appl Mater Interfaces,2018,10(23):20014-20024.
    [57] Wang YX,Fan YT,Zhang MH,et al. Glycopolypeptide nanocarriers based on dynamic covalent bonds for glucose dual-responsiveness and self-regulated release of insulin in diabetic rats[J]. Biomacromolecules,2020,21(4):1507-1515.
    [58] Hou L,Zheng YZ,Wang YC,et al. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery[J]. ACS Appl Mater Interfaces,2018,10(26):21927-21938.
    [59] Zhang Y,Wang J,Yu J,et al. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery[J]. Small,2018,14(14):e1704181.
    [60] Liu F,Bai L,Zhang H,et al. Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers[J]. ACS Appl Mater Interfaces,2017,9(37):31626-31633.
    [61] Shen D,Yu HJ,Wang L,et al. Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties[J]. Eur Polym J,2021,148:110348.
    [62] Wang C,Ye YQ,Sun WJ,et al. Red blood cells for glucose-responsive insulin delivery[J]. Adv Mater,2017,29(18):1606617.
    [63] Sokolovska J,Isajevs S,Baumane L,et al. Enhanced expression of xanthine oxidase and NO synthases causing the overproduction of NO in kidneys of diabetic animals can be reduced by 1,4-dihydropyridines[J]. Nitric Oxide,2013,31:S15.
  • 期刊类型引用(1)

    1. 贾正勋,沈畯,董学林,陈栋,吴晶,周彧琛. 催化活性可视化的葡萄糖氧化酶纳米胶囊的制备与研究. 华中师范大学学报(自然科学版). 2024(06): 676-687 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  289
  • HTML全文浏览量:  27
  • PDF下载量:  739
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-08-07
  • 修回日期:  2021-10-25
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭