Citation: | WU Weixin, YAN Jia, TAN Xiying, LI Bo, SU Mengxiang, YAN Fang, DI Bin. Advances in enrichment strategies for phosphoproteomics and its application in the research of disease[J]. Journal of China Pharmaceutical University, 2016, 47(1): 19-29. DOI: 10.11665/j.issn.1000-5048.20160103 |
[1] |
Wasinger VC,Cordwell SJ,Cerpa-Poljak A,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J].Electrophoresis,1995,16(7):1090-1094.
|
[2] |
Zheng H,Hu P,Quinn DF,et al.Phosphotyrosine proteomic study of interferon signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography[J].Mol Cell Proteomics,2005,4(6):721-730.
|
[3] |
Beausoleil SA,Jedrychowski M,Schwartz D,et al.Large-scale characterization of HeLa cell nuclear phosphoproteins[J].Proc Natl Acad Sci U S A,2004,101(33):12130-12135.
|
[4] |
Zappacosta F,Scott GF,Huddleston MJ,et al.An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome[J].J Proteome Res,2015,14(2):997-1009.
|
[5] |
Andersson L,Porath J. Isolation of phosphoproteins by immobilized metal(Fe3+)affinity chromatography[J].Anal Biochem,1986,154(1):250-254.
|
[6] |
Hou C,Ma J,Tao D,et al.Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome[J].J Proteome Res,2010,9(8):4093-4101.
|
[7] |
Elldrissi K,Eddarir S,Tokarski C,et al.Immobilized metal affinity chromatography using open tubular capillary for phosphoprotein analysis:comparison between polymer brush coating and surface functionalization[J].J Chromatogr B,2011,879(27):2852-2859.
|
[8] |
Saeed A,Najam-ul-Haq M,Jabeen F,et al.High affinity phosphopeptides enrichment and desalting of biological materials on newly engineered poly(glycidyl propargyl ether/divinyl benzene)[J].Anal Chem,2013,85(19):8979-8986.
|
[9] |
Wang ZG,Cheng G,Liu YL,et al.Novel core-shell Cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides[J].J Colloid Interf Sci,2014,417:217-226.
|
[10] |
Ma W,Zhang Y,Li L,et al.Ti4+-immobilized magnetic composite microspheres for highly selective enrichment of phosphopeptides[J].Adv Funct Mater,2013,23(1):107-115.
|
[11] |
Wang F,Zhang Y,Yang P,et al.Fabrication of polymeric microgels using reflux-precipitation polymerization and its application for phosphoprotein enrichment[J].J Mater Chem B,2014,2(17):2575-2582.
|
[12] |
Li XS,Pan YN,Zhao Y,et al.Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides[J].J Chromatogr A,2013,1315:61-69.
|
[13] |
Sun N,Deng C,Li Y,et al.Size-exclusive magnetic graphene/mesoporous silica composites with Titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides[J].ACS Appl Mater Inter,2014,6(14):11799-11804.
|
[14] |
Shen F,Hu Y,Guan P,et al.Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides[J].J Sep Sci,2013,36(3):540-547.
|
[15] |
Shi C,Deng C,Zou SE,et al.Polydopamine-coated eppendorf tubes for Ti4+ immobilization for selective enrichment of phosphopeptides[J].Talanta,2014,127:88-93.
|
[16] |
Wan J,Qian K,Qiao L,et al.TiO2-modified macroporous silica foams for advanced enrichment of multi-phosphorylated peptides[J].Chem Eur J,2009,15(11):2504-2508.
|
[17] |
Bai Y,Qi L,Xu L,et al.Template-free synthesis of uniform mesoporous SnO2 nanospheres for efficient phosphopeptide enrichment[J].J Mater Chem B,2014,2(9):1121-1124.
|
[18] |
Zhang L,Xu J,Sun L,et al.Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity[J].Anal Bioanal Chem,2011,399(10):3399-3405.
|
[19] |
Ma WF,Zhang Y,Li LL,et al.Tailor-made magnetic Fe3O4@ mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides[J].ACS Nano,2012,6(4):3179-3188.
|
[20] |
Zhang Y,Ma W,Zhang C,et al.Titania composite microspheres endowed with a size-exclusive effect toward the highly specific revelation of phosphopeptidome[J].ACS Appl Mater Inter,2014,6(9):6290-6299.
|
[21] |
Zhang Y,Li L,Ma W,et al.Two-in-one strategy for effective enrichment of phosphopeptides using magnetic mesoporous γ-Fe2O3 nanocrystal clusters[J].ACS Appl Mater Inter,2013,5(3):614-621.
|
[22] |
Yan Y,Zhang X,Deng C. Designed synthesis of titania nanoparticles coated hierarchially ordered macro/mesoporous silica for selective enrichment of phosphopeptides[J].ACS Appl Mater Inter,2014,6(8):5467-5471.
|
[23] |
Cheng G,Wang ZG,Liu YL,et al.Magnetic affinity microspheres with meso/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules[J].ACS Appl Mater Inter,2013,5(8):3182-3190.
|
[24] |
Li H,Shi X,Qiao L,et al.Synthesis of a new type of echinus-like Fe3O4@ TiO2 core-shell-structured microspheres and their applications in selectively enriching phosphopeptides and removing phospholipids[J].J Chromatogr A,2013,1275:9-16.
|
[25] |
Li W,Deng Q,Fang G,et al.Facile synthesis of Fe3O4@ TiO2-ZrO2 and its application in phosphopeptide enrichment[J].J Mater Chem B,2013,1(14):1947-1961.
|
[26] |
Li LP,Zheng T,Xu LN,et al.SnO2-ZnSn(OH)6:a novel binary affinity probe for global phosphopeptide detection[J].Chem Commun,2013,49(17):1762-1764.
|
[27] |
Wang F,Shi Z,Hu F,et al.Tuning of Ti-doped mesoporous silica for highly efficient enrichment of phosphopeptides in human placenta mitochondria[J].Anal Bioanal Chem,2013,405(5):1683-1693.
|
[28] |
Huang X,Wang J,Liu C,et al.A novel rGR-TiO2-ZrO2 composite nanosheet for capturing phosphopeptides from biosamples[J].J Mater Chem B,2015,3(12):2505-2515.
|
[29] |
Xu LN,Li LP,Jin L,et al.Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides[J].Chem Commun,2014,50(75):10963-10966.
|
[30] |
Wang M,Deng C,Li Y,et al.Magnetic binary metal oxides affinity probe for highly selective enrichment of phosphopeptides[J].ACS Appl Mater Inter,2014,6(14):11775-11782.
|
[31] |
Yan Y,Lu J,Deng C,et al.Facile synthesis of titania nanoparticles coated carbon nanotubes for selective enrichment of phosphopeptides for mass spectrometry analysis[J].Talanta,2013,107:30-35.
|
[32] |
Wang ST,Wang MY,Su X,et al.Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of phosphopeptides[J].Anal Chem,2012,84(18):7763-7770.
|
[33] |
He XM,Zhu GT,Li XS,et al.Rapid enrichment of phosphopeptides by SiO2-TiO2 composite fibers[J].Analyst,2013,138(18):5495-5502.
|
[34] |
Tan YJ,Sui D,Wang WH,et al.Phosphopeptide enrichment with TiO2-modified membranes and investigation of tau protein phosphorylation[J].Anal Chem,2013,85(12):5699-5706.
|
[35] |
Jabeen F,Najam-ul-Haq M,Rainer M,et al.Newly fabricated magnetic lanthanide oxides core-shell nanoparticles in phosphoproteomics[J].Anal Chem,2015,87(9):4726-4732.
|
[36] |
Min Q,Li S,Chen X,et al.Magnetite/ceria-codecorated titanoniobate nanosheet:a 2D catalytic nanoprobe for efficient enrichment and programmed dephosphorylation of phosphopeptides[J].ACS Appl Mater Inter, 2015,7(18):9563-9572.
|
[37] |
Thingholm TE,Jensen ON,Robinson PJ,et al.SIMAC(sequential elution from IMAC),a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides[J].Mol Cell Proteomics,2008,7(4):661-671.
|
[38] |
Yu QW,Li XS,Xiao Y,et al.Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells[J].J Chromatogr A,2014,1365:54-60.
|
[39] |
Tape CJ,Worboys JD,Sinclair J,et al.Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC[J].Anal Chem,2014,86(20):10296-10302.
|
[40] |
Eriksson AI, Bartsch M, Bergquist J, et al. On-target titanium dioxide-based enrichment for characterization of phosphorylations in the Adenovirus pIIIa protein[J].J Chromatogr A,2013,1317:105-109.
|
[41] |
Tsougeni K,Zerefos P,Tserepi A,et al.TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation[J].Lab Chip,2011,11(18):3113-3120.
|
[42] |
Tang LA,Wang J,Lim TK,et al.High-performance graphene-titania platform for detection of phosphopeptides in cancer cells[J].Anal Chem,2012,84(15):6693-6700.
|
[43] |
Min Q, Chen X, Zhang X, et al. Tailoring of a TiO2 nanotube array-integrated portable microdevice for efficient on-chip enrichment and isotope labeling of serum phosphopeptides[J].Lab Chip,2013,13(19):3853-3861.
|
[44] |
Vormbrock I,Kaber G,Hartwig S,et al.Targeting phosphoprotein profiling by combination of hydroxyapatite-based phosphoprotein enrichment and SELDI-TOF MS[J].Arch Physiol Biochem,2010,116(4/5):181-187.
|
[45] |
Yu Q,Li XS,Yuan BF,et al.Preparation of magnetic hydroxyapatite clusters and their application in the enrichment of phosphopeptides[J].J Sep Sci,2014,37(5):580-586.
|
[46] |
Xu CF,Lu Y,Ma J,et al.Identification of phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification[J].Mol Cell Proteomics,2005,4(6):809-818.
|
[47] |
de Graaf EL,Giansanti P,Altelaar AF,et al.Single-step enrichment by Ti4+-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution[J].Mol Cell Proteomics,2014,13(9):2426-2434.
|
[48] |
Luerman GC,Powell DW,Uriarte SM,et al.Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation[J].Mol Cell Proteomics,2011,10(3):M110. 001552.
|
[49] |
Zawadzka AM,Schilling B,Cusack MP,et al.Phosphoprotein secretome of tumor cells as a source of candidates for breast cancer biomarkers in plasma[J].Mol Cell Proteomics,2014,13(4):1034-1049.
|
[50] |
Dillon R,Nilsson CL,Shi SD,et al.Discovery of a novel B-Raf fusion protein related to c-Met drug resistance[J].J Proteome Res,2011,10(11):5084-5094.
|
[51] |
Yang Y,Chen Y,Saha MN,et al.Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma[J].Leukemia,2015,29(3):715-726.
|
[1] | LI Xueyan, CHEN Na, JIANG Cheng. Research progress of KRAS inhibitors[J]. Journal of China Pharmaceutical University, 2024, 55(2): 257-269. DOI: 10.11665/j.issn.1000-5048.2024010801 |
[2] | YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503 |
[3] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[4] | ZHAN Kangning, QUAN Xu, HUANG Zhangjian, ZHAO Liwen. Research progress of protein arginine methyltransferase 5 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(3): 371-378. DOI: 10.11665/j.issn.1000-5048.20210315 |
[5] | LI Zhiyan, LIU Jie, LI Bingyan, JIANG Cheng. Design, synthesis and evaluation of peptidomimetics targeting the polo-box domain of polo-like kinase 1[J]. Journal of China Pharmaceutical University, 2020, 51(3): 287-294. DOI: 10.11665/j.issn.1000-5048.20200305 |
[6] | LIANG Tingting, WANG Wenjie, HE Guangchao, HE Guangchao, XU Yungen. Research progress of ERK small molecule inhibitors[J]. Journal of China Pharmaceutical University, 2020, 51(3): 260-269. DOI: 10.11665/j.issn.1000-5048.20200302 |
[7] | SHI Jinyu, BAI Ying, PENG Kewen, ZHANG Wenhui, ZHU Qihua, XU Yungen. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. Journal of China Pharmaceutical University, 2019, 50(5): 523-530. DOI: 10.11665/j.issn.1000-5048.20190503 |
[8] | WANG Tianshuai, YU Junjie, ZHANG Yan, ZENG Jinjin, CUI Jingxin. Advances in platinum-intercalators of DNA as antitumor agents[J]. Journal of China Pharmaceutical University, 2019, 50(5): 505-515. DOI: 10.11665/j.issn.1000-5048.20190501 |
[9] | GUO Yahui, LU Peng, WANG Yubin, ZHANG Huibin. Progress in the researches for antitumor NEDD8 activating enzyme inhibitors[J]. Journal of China Pharmaceutical University, 2017, 48(6): 646-653. DOI: 10.11665/j.issn.1000-5048.20170603 |
[10] | KONG Kai-lai, LU Shuai, GAO Yi-ping, YANG Pei, TANG Wei-fang, LU Tao. Advances on the study of PLK1 inhibitors as antitumor agents[J]. Journal of China Pharmaceutical University, 2011, 42(1): 9-15. |