Citation: | LIANG Jinlai, XU Wei, YIN Tingjie, HUO Meirong. Advances in the hypoxia-responsive antitumor drug nanocarriers and tumor hypoxia relieve[J]. Journal of China Pharmaceutical University, 2018, 49(3): 255-262. DOI: 10.11665/j.issn.1000-5048.20180301 |
[1] |
Alimoradi H,Matikonda SS,Gamble AB,et al.Hypoxia responsive drug delivery systems in tumor therapy[J].Curr Pharm Des,2016,22(19):2808-2820.
|
[2] |
Rapisarda A,Melillo G.Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies[J].Drug Resist Updat,2009,12(3):74-80.
|
[3] |
Bryant JL,Meredith SL,Williams KJ,et al.Targeting hypoxia in the treatment of small cell lung cancer[J].Lung Cancer,2014,86(2):126-32.
|
[4] |
Du J,Lane LA,Nie S.Stimuli-responsive nanoparticles for targeting the tumor microenvironment[J].J Control Release,2015,219:205-214.
|
[5] |
Khawar IA,Kim JH,Kuh HJ.Improving drug delivery to solid tumors:priming the tumor microenvironment[J].J Control Release,2015,201:78-89.
|
[6] |
Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer—a review[J].Target Oncol,2012,7(4):233-242.
|
[7] |
Alam F,Yadav N,Ahmad M,et al.Blood substitutes:possibilities with nanotechnology[J].Indian J Hematol Blood Transfus,2014,30(3):155-162.
|
[8] |
Spahn DR.Blood substitutes.Artificial oxygen carriers:perfluorocarbon emulsions[J].Crit Care,1999,3(5):R93-97.
|
[9] |
Greenburg AG,Kim HW.Hemoglobin-based oxygen carriers[J].Crit Care,2004,8(Suppl 2):S61-S64.
|
[10] |
Yuan J,Cen Y,Kong XJ,et al.MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood[J].ACS Appl Mater Interfaces,2015,7(19):10548-10555.
|
[11] |
Fan W, Bu W, Shen B, et al. Intelligent MnO2 nanosheets anchored with upconversionnanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J].Adv Mater,2015,27(28):4155-4161.
|
[12] |
Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies,including brain tumours[J].Med Oncol,2016,33(9):101.
|
[13] |
Peng HS,Liao MB,Zhang MY,et al.Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells[J].PLoS One,2014,9(6):e100814.
|
[14] |
Lu Z, Ma J, Liu B, et al. Hyperbaric oxygen therapy sensitizes nimustine treatment for glioma in mice[J].Cancer Med,2016,5(11):3147-3155.
|
[15] |
Hartmann KA,van der Kleij AJ,Carl UM,et al.Effects of hyperbaric oxygen and normobaric carbogen on the radiation response of the rat rhabdomyosarcoma R1H[J].Int J Radiat Oncol Biol Phys,2001,51(4):1037-1044.
|
[16] |
Wu W,Yang Q,Li T,et al.Hemoglobin-based oxygen carriers combined with anticancer drugs may enhance sensitivity of radiotherapy and chemotherapy to solid tumors[J].Artif Cells Blood Substit Immobil Biotechnol,2009,37(4):163-165.
|
[17] |
Vásquez DM,Ortiz D,Alvarez OA,et al.Hemorheological implications of perfluorocarbon based oxygen carrier interaction with colloid plasma expanders and blood[J].Biotechnol Prog,2013,29(3):796-807.
|
[18] |
Riess JG.Perfluorocarbon-based oxygen delivery[J].Artif Cells Blood Substit Immobil Biotechnol,2006,34(6):567-580.
|
[19] |
Li F,Mei H,Gao Y,et al.Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer[J].Biomaterials,2017,145:56-71.
|
[20] |
Luo Z,Zheng M,Zhao P,et al.Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy[J].Sci Rep,2016,6:23393.
|
[21] |
Cheng Y,Cheng H,Jiang C,et al.Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J].Nat Commun,2015,6:8785.
|
[22] |
Song X,Feng L,Liang C,et al.Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies[J].Nano Lett,2016,16(10):6145-6153.
|
[23] |
Zhang L,Li J,Zong L,et al.Reactive oxygen species and targeted therapy for pancreatic cancer[J].Oxid Med Cell Longev,2016,2016(3):1616781.
|
[24] |
Vilema-Enríquez G,Arroyo A,Grijalva M,et al.Molecular and cellular effects of hydrogen peroxide on human lung cancer cells:potential therapeutic implications[J].Oxid Med Cell Longev,2016,2016(6):1-12.
|
[25] |
Lennicke C,Rahn J,Lichtenfels R,et al.Hydrogen peroxide-production,fate and role in redox signaling of tumor cells[J].Cell Commun Signal,2015,13:39.
|
[26] |
Chen Q, Chen J, Liang C, et al. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration,hypoxia relieve,and synergistic combination therapy[J].J Control Release,2017,263:79-89.
|
[27] |
Prasad P,Gordijo CR,Abbasi AZ,et al.Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia,acidosis,vascular endothelial growth factor and enhance radiation response[J].ACS Nano,2014,8(4):3202-3212.
|
[28] |
Chen H,He W,Guo Z.An H2O2-responsive nanocarrier for dual-release of platinum anticancer drugs and O2:controlled release and enhanced cytotoxicity against cisplatin resistant cancer cells[J].Chem Commun(Camb),2014,50(68):9714-9717.
|
[29] |
Chen H,Tian J,He W,et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J].J Am Chem Soc,2015,137(4):1539-1547.
|
[30] |
Song G,Chen Y,Liang C,et al.Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy[J].Adv Mater,2016,28(33):7143-7148.
|
[31] |
Zhu W,Dong Z,Fu T,et al.Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy[J].Adv Funct Mater,2016,26(30):5490-5498.
|
[32] |
Gao S,Wang G,Qin Z,et al.Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy[J].Biomaterials,2017,112:324-335.
|
[33] |
Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs[J].Cancer Chemother Pharmacol,2016,77(3):441-457.
|
[34] |
Guise CP,Mowday AM,Ashoorzadeh A,et al.Bioreductive prodrugs as cancer therapeutics:targeting tumor hypoxia[J].Chin J Cancer,2014,33(2):80-86.
|
[35] |
Denny WA.Hypoxia-activated prodrugs in cancer therapy:progress to the clinic[J].Future Oncol,2010,6(3):419-428.
|
[36] |
Denny WA,Wilson WR,Hay MP.Recent developments in the design of bioreductive drugs[J].Br J Cancer Suppl,1996,27:S32-S38.
|
[37] |
Mistry IN, Thomas M, Calder EDD, et al. Clinical advances of hypoxia-activated prodrugs in combination with radiation therapy[J].Int J Radiat OncolBiol Phys,2017,98(5):1183-1196.
|
[38] |
Feng L, Cheng L, Dong Z, et al. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy[J].ACS Nano,2017,11(1):927-937.
|
[39] |
Li SY, Cheng H, Qiu WX, et al. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy[J].Biomaterials,2017,142:149-161.
|
[40] |
Wang Y,Xie Y,Li J,et al.Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy[J].ACS Nano,2017,11(2):2227-2238.
|
[41] |
Thambi T,Park JH,Lee DS.Hypoxia-responsive nanocarriers for cancer imaging and therapy:recent approaches and future perspectives[J].Chem Commun(Camb),2016,52(55):8492-8500.
|
[42] |
Thambi T,Deepagan VG,Yoon HY,et al.Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery[J].Biomaterials,2014,35(5):1735-1743.
|
[43] |
Kang L,Fan B,Sun P,et al.An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome[J].Acta Biomater,2016,44:341-354.
|
[44] |
Ahmad Z,Lv S,Tang Z,et al.Methoxy poly(ethylene glycol)-block-poly(glutamic acid)-graft-6-(2-nitroimidazole)hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin[J].J Biomater Sci Polym Ed,2016,27(1):40-54.
|
[45] |
Liu H,Zhang R,Niu Y,et al.Development of hypoxia-triggered prodrug micelles as doxorubicin carriers for tumor therapy[J].RSC Adv,2015,5(27):20848-20857.
|
[46] |
Perche F,Biswas S,Wang T,et al.Hypoxia-targeted siRNA delivery[J].Angew Chem Int Ed Engl,2014,53(13):3362-3366.
|
[47] |
Kulkarni P,Haldar MK,You S,et al.Hypoxia-responsive polymersomes for drug delivery to hypoxic pancreatic cancer cells[J].Biomacromolecules,2016,17(8):2507-2513.
|
[1] | CHU Xuxin, BU Fanxue, YIN Tingjie, HUO Meirong. Antitumor strategies based on targeted modulation of tumor-associated macrophages[J]. Journal of China Pharmaceutical University, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301 |
[2] | SUN Xiaofeng, LIU Tao, LING Yun, CHEN Zhengwei, PAN Zihao, XU Zite, LUO Ling. Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J]. Journal of China Pharmaceutical University, 2019, 50(6): 641-647. DOI: 10.11665/j.issn.1000-5048.20190602 |
[3] | SUN Dongyu, GONG Jingxu, LI Xuwen, HAN Guanying, GUO Yuewei. Studies on methyl xestopongoate analogues:design, synthesis and antitumor activities[J]. Journal of China Pharmaceutical University, 2018, 49(4): 413-421. DOI: 10.11665/j.issn.1000-5048.20180405 |
[4] | QIAO Yixue, MOU Yi, HUANG Zhangjian, AI Yong, KANG Fenghua, LAI Yisheng, ZHANG Yihua. Synthesis and antitumor activities of novel CDDO-Me analogues[J]. Journal of China Pharmaceutical University, 2015, 46(3): 289-293. DOI: 10.11665/j.issn.1000-5048.20150305 |
[5] | XU Yue, YUE Jiping, YANG Xianyu. Research advances in antitumor peptides of Anuran[J]. Journal of China Pharmaceutical University, 2014, 45(5): 587-592. DOI: 10.11665/j.issn.1000-5048.20140515 |
[6] | CHENG Haibo, XU Bin, ZHANG Huibin, ZHOU Jinpei. Synthetic process of antitumor drug dacomitinib[J]. Journal of China Pharmaceutical University, 2014, 45(2): 165-169. DOI: 10.11665/j.issn.1000-5048.20140206 |
[7] | HU Kun, ZHOU Anfei, JIANG Hefei, XU Yuanyuan, HUANG Qianhui, YANG Jie, CHEN Xin, REN Jie. Synthesis and antitumor activities of podophyllotoxin derivatives[J]. Journal of China Pharmaceutical University, 2014, 45(1): 33-38. DOI: 10.11665/j.issn.1000-5048.20140105 |
[8] | REN Jie, CHENG Hong, WANG Wei, HU Kun. Synthesis and antitumor activity of novel chrysin derivatives[J]. Journal of China Pharmaceutical University, 2011, 42(3): 206-212. |
[9] | HUANG Fang-fang, YANG Yong-fang, DING Guo-fang. Advances in the study of antitumor activities of the marine mollusks extracts[J]. Journal of China Pharmaceutical University, 2009, 40(3): 284-288. |
[10] | ZHOU Mei, MA Lin, HAO Xiao-jiang, YANG Xiao-sheng. Antitumor activities of chemical constituents of Cephalotaxus fortunei in Guizhou province[J]. Journal of China Pharmaceutical University, 2009, 40(3): 209-212. |