Citation: | CAI Gongli, CHEN Yu, LIN Shuting, ZHU Dandan, DONG Yiwen, LI Ning, LIU Xiaoxuan. Application of dendrimer-based siRNA delivery systems[J]. Journal of China Pharmaceutical University, 2019, 50(3): 274-288. DOI: 10.11665/j.issn.1000-5048.20190303 |
[1] |
Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391(6669):806-811.
|
[2] |
Hannon GJ.RNA interference[J].Nature,2002,418(6894):244-251.
|
[3] |
Setten RL,Rossi JJ,Han SP.The current state and future directions of RNAi-based therapeutics[J].Nat Rev Drug Discov,2019.DOI: 10.1038/s41573-019-0017-4.
|
[4] |
Yin H,Kanasty RL,Eltoukhy AA,et al.Non-viral vectors for gene-based therapy[J].Nat Rev Genet,2014,15(8):541-555.
|
[5] |
Mintzer MA,Grinstaff MW.Biomedical applications of dendrimers:a tutorial[J].Chem Soc Rev,2011,40(1):173-190.
|
[6] |
Tomalia DA.Birth of a new macromolecular architecture:dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry[J].Prog Polym Sci,2005,30(3/4):294-324.
|
[7] |
Biswas S,Torchilin VP.Dendrimers for siRNA Delivery[J].Pharmaceuticals,2013,6(2):161-183.
|
[8] |
Tomalia DA,Baker H,Dewald J,et al.A new class of polymers:starburst-dendritic macromolecules[J].Polym J,1985,17(1):117-132.
|
[9] |
Liu X,Rocchi P,Peng L.Dendrimers as non-viral vectors for siRNA delivery[J].New J Chem,2012,36:256-263.
|
[10] |
Tang MX,Redemann CT,Jr SF.In vitro gene delivery by degraded polyamidoamine dendrimers[J].Bioconjug Chem,1996,7(6):703-714.
|
[11] |
Kang H,DeLong R,Fisher MH,et al.Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides[J].Pharm Res,2005,22(12):2099-2106.
|
[12] |
Zhou J,Wu J,Hafdi N,et al.PAMAM dendrimers for efficient siRNA delivery and potent gene silencing[J].Chem Commun,2006,22:2362-2364.
|
[13] |
Liu X,Rocchi P,Qu F,et al.PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells[J].ChemMedChem,2009,4(8):1302-1310.
|
[14] |
Zhou J,Neff CP,Liu X,et al.Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice[J].Mol Ther,2011,19(12):2228-2238.
|
[15] |
Ma J,Kala S,Yung S,et al.Blocking sternness and metastatic properties of ovarian cancer cells by targeting p70(S6K)with dendrimer nanovector-based siRNA delivery[J].Mol Ther,2018,26(1):70-83.
|
[16] |
Reebye V,Saetrom P,Mintz PJ,et al.Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo[J].Hepatology,2014,59(1):216-227.
|
[17] |
Cui Q,Yang S,Ye P,et al.Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis[J].Nat Commun,2016,7:10637-10652.
|
[18] |
Tang Y,Li YB,Wang B,et al.Efficient in vitro siRNA delivery and intramuscular gene silencing using PEG-modified PAMAM dendrimers[J].Mol Pharmaceutics,2012,9(6):1812-1821.
|
[19] |
Ma Y,Sha M,Cheng S,et al.Construction of hyaluronic tetrasaccharide clusters modified polyamidoamine siRNA delivery system[J].Nanomaterials,2018,8(6):433-446.
|
[20] |
Liu X,Liu C,Chen C,et al.Targeted delivery of dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer deli-very system[J].Nanomedicine,2014,10(8):1627-1636.
|
[21] |
Liu C,Liu X,Rocchi P,et al.Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo[J].Bioconjug Chem,2014,25(3):521-532.
|
[22] |
Chang H,Zhang YM,Li L,et al.Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers[J].J Mater Chem B,2015,3:8197-8202.
|
[23] |
Biswas S, Deshpande PP, Navarro G, et al. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery[J].Biomaterials,2013,34(4):1289-1301.
|
[24] |
He B,Wang Y,Shao N,et al.Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery[J].Acta Biomater,2015,22:111-119.
|
[25] |
Wang M,Cheng Y.Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery[J].Acta Biomater,2016,46:204-210.
|
[26] |
Buhleier E,Wehner W,Voegtle F.“Cascade”-and “nonskid-chain-like” syntheses of molecular cavity topplogies[J].Chem Informationsdienst,1978,9(25):155-158.
|
[27] |
de Brabander-van den Berg E,Meijer E.Poly(propylene imine)dendrimers:large-scale synthesis by hetereogeneously catalyzed hydrogenations[J].Angew Chem Int Ed,1993,32(9):1308-1311.
|
[28] |
Wörner C,Mülhaupt R.Polynitrile- and polyamin-functional poly(trimethylene imine)dendrimers[J].Angew Chem Int Ed,1993,32(9):1306-1308.
|
[29] |
Tietze S,Schau I,Michen S,et al.A poly(propyleneimine)dendrimer-based polyplex-system for single-chain antibody-mediated targeted delivery and cellular uptake of siRNA[J].Small,2017,13(27):1700072-1700088.
|
[30] |
Schumann C,Chan S,Khalimonchuk O,et al.Mechanistic nanotherapeutic approach based on siRNA-mediated DJ-1 protein suppression for platinum-resistant ovarian cancer[J].Mol Pharmaceutics,2016,13(6):2070-2083.
|
[31] |
Taratula O,Garbuzenko OB,Kirkpatrick P,et al.Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery[J].J Control Release,2009,140(3):284-293.
|
[32] |
Omidi Y,Hollins AJ,Drayton RM,et al.Polypropylenimine dendrimer-induced gene expression changes:the effect of complexation with DNA,dendrimer generation and cell type[J].J Drug Target,2005,13(7):431-443.
|
[33] |
Santos SS,Gonzaga RV,Silva JV,et al.Peptide dendrimers:drug/gene delivery and other approaches[J].Can J Chem,2017,95(9):907-916.
|
[34] |
Tam JP,Spetzler JC.Synthesis and application of peptide dendrimers as protein mimetics[J].Curr Protoc Protein Sci,2001.doi: 10.1002/0471140864.ps1805S17.
|
[35] |
Inoue Y,Kurihara R,Tsuchida A,et al.Efficient delivery of siRNA using dendritic poly(L-lysine)for loss-of-function analysis[J].J Control Release,2008,126(1):59-66.
|
[36] |
Baigude H,Su J,McCarroll J,et al.In vivo delivery of RNAi by reducible interfering nanoparticles(iNOPs)[J].ACS Med Chem Lett,2013,4(8):720-723.
|
[37] |
Cai X,Zhu H,Zhang Y,et al.Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy[J].ACS Appl Mater Interfaces,2017,9(11):9402-9415.
|
[38] |
Haag R,Sunder A,Stumbe JF.An approach to glycerol dendrimers and pseudo-dendritic polyglycerols[J].J Am Chem Soc,2000,122(12):2954-2955.
|
[39] |
Fischer W,Calderon M,Schulz A,et al.Dendritic polyglycerols with oligoamine shells show low toxicity and high siRNA transfection efficiency in vitro[J].Bioconjug Chem,2010,21(10):1744-1752.
|
[40] |
Mehrabadi FS,Hirsch O,Zeisig R,et al.Structure-activity relationship study of dendritic polyglycerolamines for efficient siRNA transfection[J].RSC Adv,2015,5:78760-78770.
|
[41] |
Zeng H,Schlesener C,Cromwell O,et al.Amino acid-functionalized dendritic polyglycerol for safe and effective siRNA delivery[J].Biomacromolecules,2015,16(12):3869-3877.
|
[42] |
Wen Y, Guo Z, Du Z, et al. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives[J].Biomaterials,2012,33(32):8111-8121.
|
[43] |
Mehrabadi FS,Zeng HX,Johnson M,et al.Multivalent dendritic polyglycerolamine with arginine and histidine end groups for efficient siRNA transfection[J].Beilstein J Org Chem,2015,11:763-772.
|
[44] |
Krska SW,Seyferth D.Synthesis of water-soluble carbosilane dendrimers[J].J Am Chem Soc,1998,120:3604-3612.
|
[45] |
Weber N,Ortega P,Clemente MI,et al.Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes[J].J Control Release,2008,132(1):55-64.
|
[46] |
Pedziwiatr-Werbicka E,Fuentes E,Dzmitruk V,et al.Novel ‘Si-C’ carbosilane dendrimers as carriers for anti-HIV nucleic acids:studies on complexation and interaction with blood cells[J].Colloids Surf B Biointerfaces,2013,109:183-189.
|
[47] |
de Las Cuevas N,Garcia-Gallego S,Rasines B,et al.In vitro studies of water-stable cationic carbosilane dendrimers as delivery vehicles for gene therapy against HIV and hepatocarcinoma[J].Curr Med Chem,2012,19(29):5052-5061.
|
[48] |
Fuentes-Paniagua E,Hernandez-Ros JM,Sanchez-Milla M,et al.Carbosilane cationic dendrimers synthesized by thiol-ene click chemistry and their use as antibacterial agents[J].RSC Adv,2014,4:1256-1265.
|
[49] |
Herma R,Wrobel D,Liegertova M,et al.Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery[J].Int J Pharm,2019,562:51-65.
|
[50] |
Chen HT,Neerman MF,Parrish AR,et al.Cytotoxicity,hemolysis,and acute in vivo toxicity of dendrimers based on melamine,candidate vehicles for drug delivery[J].J Am Chem Soc,2004,126(32):10044-10048.
|
[51] |
Merkel OM,Mintzer MA,Librizzi D,et al.Triazine dendrimers as nonviral vectors for in vitro and in vivo RNAi:the effects of peripheral groups and core structure on biological activity[J].Mol Pharmaceutics,2010,7(4):969-983.
|
[52] |
Pavan GM,Mintzer MA,Simanek EE,et al.Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers[J].Biomacromolecules,2010,11(3):721-730.
|
[53] |
Yu T,Liu X,Bolcato-Bellemin AL,et al.An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo[J].Angew Chem Int Ed,2012,51(34):8478-8484.
|
[54] |
Chen C,Posocco P,Liu X,et al.Mastering dendrimer self-assembly for efficient siRNA delivery:from conceptual design to in vivo efficient gene silencing[J].Small,2016,12(27):3667-3676.
|
[55] |
Liu X,Zhou J,Yu T,et al.Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems[J].Angew Chem Int Ed,2014,53(44):11822-11827.
|
[56] |
Liu X, Liu C, Zhou J, et al. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer[J].Nanoscale,2015,7(9):3867-3875.
|
[57] |
Dong Y,Yu T,Ding L,et al.A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy[J].J Am Chem Soc,2018,140(47):16264-16274.
|
[58] |
Liu X,Wang Y,Chen C,et al.A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA,via specific response to reactive oxygen species[J].Adv Funct Mater,2016,26(47):8594-8603.
|
[59] |
Li X,Sun AN,Liu YJ,et al.Amphiphilic dendrimer engineered nanocarrier systems for co-delivery of siRNA and paclitaxel to matrix metalloproteinase-rich tumors for synergistic therapy[J].Npg Asia Mater,2018,10:238-254.
|
[60] |
Malhotra S,Bauer H,Tschiche A,et al.Glycine-terminated dendritic amphiphiles for nonviral gene delivery[J].Biomacromolecules,2012,13(10):3087-3098.
|
[61] |
Tschiche A,Staedtler AM,Malhotra S,et al.Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications[J].J Mater Chem B,2014,2:2153-2167.
|
[62] |
Tschiche A, Thota BN, Neumann F, et al. Crosslinked redox-responsive micelles based on lipoic acid-derived amphiphiles for enhanced siRNA delivery[J].Macromol Biosci,2016,16(6):811-823.
|
[63] |
Sanchez-Nieves J,Fransen P,Pulido D,et al.Amphiphilic cationic carbosilane-PEG dendrimers:synthesis and applications in gene therapy[J].Eur J Med Chem,2014,76:43-52.
|
[1] | WU Lingxi, DU Yixuan, GAO Xiangdong. Inhibitory effect of IL-27 on the overactivation of microglia[J]. Journal of China Pharmaceutical University, 2024, 55(6): 801-808. DOI: 10.11665/j.issn.1000-5048.2024022702 |
[2] | WANG Sibu, CHEN Ying, DING Yang, XIAO Ting, LIU Wen, SHEN Xiangchun, TAO Ling, LUO Xinghong. Preparation of paeonol nanoemulsion and investigation of vascular endothelial cells uptake[J]. Journal of China Pharmaceutical University, 2022, 53(6): 690-697. DOI: 10.11665/j.issn.1000-5048.20220607 |
[3] | ZHANG Wendian, CUI Jie, XIA Yifan, ZHANG Xin, DUAN Shaofeng. Synthesis of two folate conjugates and their targeting effect in vitro[J]. Journal of China Pharmaceutical University, 2021, 52(4): 447-454. DOI: 10.11665/j.issn.1000-5048.20210407 |
[4] | WANG Xiaoying, WANG Xiaying, QIU Liangzhen, OUYANG Huizhi, XU Wei. Cytotoxicity and cellular uptake of paclitaxel-loaded carboxymethyl chitosan-rhein polymeric micelles in MCF-7 cells[J]. Journal of China Pharmaceutical University, 2020, 51(1): 33-37. DOI: 10.11665/j.issn.1000-5048.20200106 |
[5] | XU Wanyi, QIAO Jianbin, MA Bo, WANG Ran, QIAN Wen, LU Weidong. Cellular immunity of influenza vaccine lyophilized liposome produced by freeze-thawing[J]. Journal of China Pharmaceutical University, 2015, 46(6): 730-733. DOI: 10.11665/j.issn.1000-5048.20150616 |
[6] | CHEN Zhipeng, ZHANG Liujie, HE Jiayu, FENG Changhua, ZHAO Xiaoyi, ZHAO Can, CHENG Tiefeng. Cellular uptake of Brucine-loaded chitosan nanoparticles on human hepatic cancer cells in vitro[J]. Journal of China Pharmaceutical University, 2014, 45(6): 674-680. DOI: 10.11665/j.issn.1000-5048.20140610 |
[7] | LI Wenting, WANG Lu, ZHANG Can. Influence of surface characteristics on hepatocellular carcinoma cells uptake of nano-liposomes[J]. Journal of China Pharmaceutical University, 2013, 44(3): 244-248. DOI: 10.11665/j.issn.1000-5048.20130311 |
[8] | Bifendate liposomes modified by bile and its role in enhancing hepatocytes uptake in vitro[J]. Journal of China Pharmaceutical University, 2010, 41(4): 342-347. |
[9] | SHAO Jing-ping, ZHANG Shan-fei, CHEN Yuan-cheng, YANG Wen-liang, LIU Xiao-quan. Cellular uptake characteristics of salvianolic acid B in myocardial cells and blood vessel endothelial cells[J]. Journal of China Pharmaceutical University, 2009, 40(3): 263-268. |
[10] | Preparation of Brush Border Membrane Vesicles and Preliminary Studies on the Uptake of 5-FU[J]. Journal of China Pharmaceutical University, 2001, (6): 23-25. |