• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SHI Kangjie, CHEN Jiaxuan, LIU Xiaoxuan, PENG Ling. Self-assembling dendrimers for biomedical applications[J]. Journal of China Pharmaceutical University, 2021, 52(1): 20-30. DOI: 10.11665/j.issn.1000-5048.20210103
Citation: SHI Kangjie, CHEN Jiaxuan, LIU Xiaoxuan, PENG Ling. Self-assembling dendrimers for biomedical applications[J]. Journal of China Pharmaceutical University, 2021, 52(1): 20-30. DOI: 10.11665/j.issn.1000-5048.20210103

Self-assembling dendrimers for biomedical applications

Funds: This work was supported by the National Natural Science Foundation of China (No.50773127, No. 81701815), the Key Program for International S&T Cooperation Projects of China (No. 2018YFE0117800), the Natural Science Foundation of Jiangsu Province (No.BK20170734), the Program for Jiangsu Province Innovative Research Talents, the State Key Laboratory of Natural Medicines at China Pharmaceutical University (No.SKLNMZZ202007), Bourse d"Excellence Eiffel andLigue Nationale Contre le Cancer
More Information
  • Received Date: June 01, 2020
  • Revised Date: December 06, 2020
  • Dendrimers, a special class of synthetic polymers known for their well-defined ramified structures and unique multivalent cooperativity, hold great promise for various biomedical applications. However, preparation of defect-free dendrimers of high-generation on a large scale remains challenging because of the tedious and time-consuming synthesis as well as difficult purification. To overcome these limitations, an alternative strategy based on self-assembling approach has been developed to construct supramolecular dendrimers using small amphiphilic dendrimer-building units. By virtue of the amphiphilic nature, these small dendrimer-building units self-assemble and form large non-covalent supramolecular dendritic structures that mimic high-generation covalent dendrimers. Here, we present a brief overview of the supramolecular dendrimers developed in our group for the delivery of nucleic acid therapeutics, anticancer drug and imaging agents.
  • [1]
    . Synthesis-Stuttgart, 1978, 2: 155-158.
    [2]
    Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules[J]. Polym J, 1985, 17(1): 117-132.
    [3]
    Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective[J]. J Polym Sci Part A: Polym Chem, 2002, 40(16): 2719-2728.
    [4]
    Tomalia DA, Naylor AM, Goddard III WA. GW. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter[J]. Angew Chem Int Ed Engl, 1990, 29(2): 138-175.
    [5]
    V?gtle F, Richardt G, Werner N. Dendrimer chemistry: concepts, synthesis, properties, applications[M]. Wiley-VCH, Weinheim, 2009.
    [6]
    Tomalia DA, Christensen JB, Boas U. Dendrimers dendrons and dendritic polymers[M]. Cambridge: Cambridge University Press, 2012.
    [7]
    Tomalia DA, Baker H, Dewald J, et al. Dendritic macromolecules: synthesis of starburst dendrimers[J]. Macromolecules, 1986, 19(9): 2466-2468.
    [8]
    Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial[J]. Chem Soc Rev, 2011, 40(1): 173-190.
    [9]
    Cheng Y, Zhao L, Li Y, et al. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives[J]. Chem Soc Rev, 2011, 40(5): 2673-2703.
    [10]
    Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications[J]. Drug Discov Today, 2010, 15(5/6): 171-185.
    [11]
    Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents[J]. Chem Rev, 2009, 109(7): 3141-3157.
    [12]
    Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon[J]. Chem Rev, 2009, 109(1): 49-87.
    [13]
    Lee CC, MacKay JA, Fréchet JM, et al. Designing dendrimers for biological applications[J]. Nat Biotechnol, 2005, 23(12): 1517-1526.
    [14]
    Cai G, Chen Y, Lin S, et al. Application of dendrimer-based siRNA delivery systerms[J]. J China Pharm Univ(中国药科大学学报), 2019, 50(3): 274-288.
    [15]
    Kannan RM, Nance E, Kannan S, et al. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications[J]. J Intern Med, 2014, 276(6): 579-617.
    [16]
    Svenson S. The dendrimer paradox: high medical expectations but poor clinical translation[J]. Chem Soc Rev, 2015, 44(12): 4131-4144.
    [17]
    Lyu Z, Ding L, Huang AYT, et al.Poly(amidoamine) dendrimers: covalent and supramolecular synthesis[J]. Mater Today Chem, 2019, 13: 34-48.
    [18]
    Lyu Z, Ding L, Tintaru A, et al.Self-assembling supramolecular dendrimers for biomedical applications: lessons learned from poly(amidoamine) dendrimers[J]. Acc Chem Res, 2020. doi: 10.1021/acs.accounts.0c00589.
    [19]
    Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance[J]. PNAS, 2015, 112(10): 2978-2983.
    [20]
    Chen C, Posocco P, Liu X, et al. Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to in vivo efficient gene silencing[J]. Small, 2016, 12(27): 3667-3676.
    [21]
    Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors[J]. PNAS, 2018, 115(45): 11454-11459.
    [22]
    Ding L, Lyu Z, Tintaru A, et al. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging[J]. Chem Commun (Camb), 2019, 56(2): 301-304.
    [23]
    Dong YW, Yu TZ, Ding L, et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy[J]. J Am Chem Soc, 2018, 140(47): 16264-16274.
    [24]
    Liu XX, Zhou JH, Yu TZ, et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems[J]. Angew Chem Int Ed Engl, 2014, 53(44): 11822-11827.
    [25]
    Dhumal D, Lan W, Ding L, et al. An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favourable toxicity profile[J]. Nano Research, 2020.doi: 10.1007/s12274-020-3216-8.
    [26]
    Walter MV, Malkoch M. Simplifying the synthesis of dendrimers: accelerated approaches[J]. Chem Soc Rev, 2012, 41(13): 4593-4609.
    [27]
    Grayson SM, Fréchet JM. Convergent dendrons and dendrimers: from synthesis to applications[J]. Chem Rev, 2001, 101(12): 3819-3868.
    [28]
    Wooley KL, Hawker CJ, Fréchet JM. Hyperbranched macromolecules via a novel double-stage convergent growth approach[J]. J Am Chem Soc, 1991, 113(11): 4252-4261.
    [29]
    Cao Y, Liu X, Peng L. Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing[J]. Front Chem Sci Eng, 2017, 11(4): 663-675.
    [30]
    Lehn JM. Toward self-organization and complex matter[J]. Science, 2002, 295(5564): 2400-2403.
    [31]
    Webber MJ, Appel EA, Meijer EW, et al. Supramolecular biomaterials[J]. Nat Mater, 2016, 15(1): 13-26.
    [32]
    Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers[J]. Science, 2012, 335(6070): 813-817.
    [33]
    Lyu Z, Ding L, Dhumal D, et al. CHAPTER 4 Poly(amidoamine) (PAMAM) dendrimers: synthesis and biological applications[M]// The Royal Society of Chemistry. Dendrimer Chemistry: Synthetic Approaches Towards Complex Architectures, 2020: 85-113.
    [34]
    Mullen DG, Desai A, van Dongen MA, et al. Best practices for purification and characterization of PAMAM dendrimer[J]. Macromolecules, 2012, 45(12): 5316-5320.
    [35]
    Wu JY, Zhou JH, Qu FQ, et al. Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes[J]. Chem Commun (Camb), 2005(3): 313-315.
    [36]
    Zhou JH, Wu JY, Hafdi N, et al. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing[J]. Chem Commun (Camb), 2006(22): 2362-2364.
    [37]
    Liu XX, Wu JY, Yammine M, et al. Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse Thymus[J]. Bioconjug Chem, 2011, 22(12): 2461-2473.
    [38]
    Ma J, Kala S, Yung S, et al. Blocking stemness and metastatic properties of ovarian cancer cells by targeting p70S6K with dendrimer nanovector-based siRNA delivery[J]. Mol Ther, 2018, 26(1): 70-83.
    [39]
    Liu XX, Rocchi P, Qu FQ, et al. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells[J]. ChemMedChem, 2009, 4(8): 1302-1310.
    [40]
    Zhou JH, Neff CP, Liu XX, et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice[J]. Mol Ther, 2011, 19(12): 2228-2238.
    [41]
    Liu XX, Liu C, Laurini E, et al. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer[J]. Mol Pharm, 2012, 9(3): 470-481.
    [42]
    Posocco P, Liu XX, Laurini E, et al. Impact of siRNA overhangs for dendrimer-mediated siRNA delivery and gene silencing[J]. Mol Pharm, 2013, 10(8): 3262-3273.
    [43]
    Kala S, Mak AS, Liu XX, et al. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer[J]. J Med Chem, 2014, 57(6): 2634-2642.
    [44]
    Liu XX, Liu C, Chen C, et al. Targeted delivery of dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system[J]. Nanomed-Nanotechnol Biol Med, 2014, 10(8): 1627-1636.
    [45]
    Reebye V, S?trom P, Mintz PJ, et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo[J]. Hepatology, 2014, 59(1): 216-227.
    [46]
    Cui Q, Yang S, Ye P, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis[J]. Nat Commun, 2016, 7: 10637.
    [47]
    Huang KW, Reebye V, Czysz K, et al. Liver activation of hepatocellular nuclear factor-4α by small activating RNA rescues dyslipidemia and improves metabolic profile[J]. Mol Ther Nucleic Acids, 2020, 19: 361-370.
    [48]
    First-in-human safety and tolerability study of MTL-CEBPA in patients with advanced liver cancer[EB/OL]. https://ClinicalTrials.gov/show/NCT02716012.
    [49]
    Liu X, Wang Y, Chen C, et al. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species[J]. Adv Funct Mater, 2016, 26(47): 8594-8603.
    [50]
    Liu XX, Liu C, Zhou JH, et al. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer[J]. Nanoscale, 2015, 7(9): 3867-3875.
    [51]
    Yu TZ, Liu XX, Bolcato-Bellemin AL, et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo[J]. Angew Chem Int Ed Engl, 2012, 51(34): 8478-8484.
    [52]
    Zhou ZW, Cong M, Li MY, et al. Negative dendritic effect on enzymatic hydrolysis of dendrimer conjugates[J]. Chem Commun (Camb), 2018, 54(47): 5956-5959.
    [53]
    Ding L, Lyu Z, Louis B, Tintaru A, et al. Surface charge of supramolecular nanosystems for in vivo biodistribution: a microSPECT/CT imaging study[J]. Small, 2020, 16(37): e2003290.
    [54]
    Nakase I, Akita H, Kogure K, et al. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides[J]. Acc Chem Res, 2012, 45(7): 1132-1139.
  • Related Articles

    [1]LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402
    [2]ZHANG Jing, LI Lun, ZHANG Mei, HU Xiaolong, WANG Hao. Research progress in chemical constituent and pharmacological activity of Punica granatum L.[J]. Journal of China Pharmaceutical University, 2023, 54(4): 421-430. DOI: 10.11665/j.issn.1000-5048.2023032101
    [3]SUN Biao, AO Yunlin, WANG Dezhi, WANG Junya, YE Wencai, ZHANG Xiaoqi. Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J]. Journal of China Pharmaceutical University, 2022, 53(2): 178-184. DOI: 10.11665/j.issn.1000-5048.20220207
    [4]YANG Xiaojun, AI Fengfeng, LIN Junbing, TANG Jiangjiang. Chemical constituents extracted from Dictamnus dasycarpus and their α-glucosidase inhibitory activity[J]. Journal of China Pharmaceutical University, 2019, 50(1): 41-45. DOI: 10.11665/j.issn.1000-5048.20190105
    [5]Pham Thi Anh, LI Junyan, ZHANG Baobao, WANG Hao. Chemical constituents from the n-butanol portions of the fruits of Eucalyptus globulus[J]. Journal of China Pharmaceutical University, 2018, 49(4): 422-426. DOI: 10.11665/j.issn.1000-5048.20180406
    [6]MA Lin, ZHANG Yaozhou, DANG Jun. Chemical constituents from water extract of Armillaria luteo-virens[J]. Journal of China Pharmaceutical University, 2016, 47(3): 291-293. DOI: 10.11665/j.issn.1000-5048.20160307
    [7]YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305
    [8]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [9]Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336.
    [10]Hypoglycemic Effects of Extracts and Constituents from Euonymus alatus[J]. Journal of China Pharmaceutical University, 2003, (2): 32-35.
  • Cited by

    Periodical cited type(3)

    1. 胡彤,李爽,钟卫鸿. 基于酸信号转导系统的细菌耐酸机制及其应用. 生物工程学报. 2024(03): 644-664 .
    2. 吴晓妍,吴剑梅,傅丹丹,涂健,宋祥军,邵颖,祁克宗. hipA对禽致病性大肠杆菌生物学特性和致病性的影响. 西北农林科技大学学报(自然科学版). 2023(08): 11-18+28 .
    3. 郝雪雁,刘梦晓,韩紫依,房立霞,曹英秀. 大肠杆菌的耐酸机制及其改造研究进展. 微生物学通报. 2023(10): 4667-4680 .

    Other cited types(1)

Catalog

    Article views (372) PDF downloads (799) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return