Citation: | SHI Kangjie, CHEN Jiaxuan, LIU Xiaoxuan, PENG Ling. Self-assembling dendrimers for biomedical applications[J]. Journal of China Pharmaceutical University, 2021, 52(1): 20-30. DOI: 10.11665/j.issn.1000-5048.20210103 |
[1] |
. Synthesis-Stuttgart, 1978, 2: 155-158.
|
[2] |
Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules[J]. Polym J, 1985, 17(1): 117-132.
|
[3] |
Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective[J]. J Polym Sci Part A: Polym Chem, 2002, 40(16): 2719-2728.
|
[4] |
Tomalia DA, Naylor AM, Goddard III WA. GW. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter[J]. Angew Chem Int Ed Engl, 1990, 29(2): 138-175.
|
[5] |
V?gtle F, Richardt G, Werner N. Dendrimer chemistry: concepts, synthesis, properties, applications[M]. Wiley-VCH, Weinheim, 2009.
|
[6] |
Tomalia DA, Christensen JB, Boas U. Dendrimers, dendrons, and dendritic polymers[M]. Cambridge: Cambridge University Press, 2012.
|
[7] |
Tomalia DA, Baker H, Dewald J, et al. Dendritic macromolecules: synthesis of starburst dendrimers[J]. Macromolecules, 1986, 19(9): 2466-2468.
|
[8] |
Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial[J]. Chem Soc Rev, 2011, 40(1): 173-190.
|
[9] |
Cheng Y, Zhao L, Li Y, et al. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives[J]. Chem Soc Rev, 2011, 40(5): 2673-2703.
|
[10] |
Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications[J]. Drug Discov Today, 2010, 15(5/6): 171-185.
|
[11] |
Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents[J]. Chem Rev, 2009, 109(7): 3141-3157.
|
[12] |
Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon[J]. Chem Rev, 2009, 109(1): 49-87.
|
[13] |
Lee CC, MacKay JA, Fréchet JM, et al. Designing dendrimers for biological applications[J]. Nat Biotechnol, 2005, 23(12): 1517-1526.
|
[14] |
Cai G, Chen Y, Lin S, et al. Application of dendrimer-based siRNA delivery systerms[J]. J China Pharm Univ(中国药科大学学报), 2019, 50(3): 274-288.
|
[15] |
Kannan RM, Nance E, Kannan S, et al. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications[J]. J Intern Med, 2014, 276(6): 579-617.
|
[16] |
Svenson S. The dendrimer paradox: high medical expectations but poor clinical translation[J]. Chem Soc Rev, 2015, 44(12): 4131-4144.
|
[17] |
Lyu Z, Ding L, Huang AYT, et al.Poly(amidoamine) dendrimers: covalent and supramolecular synthesis[J]. Mater Today Chem, 2019, 13: 34-48.
|
[18] |
Lyu Z, Ding L, Tintaru A, et al.Self-assembling supramolecular dendrimers for biomedical applications: lessons learned from poly(amidoamine) dendrimers[J]. Acc Chem Res, 2020.
|
[19] |
Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance[J]. PNAS, 2015, 112(10): 2978-2983.
|
[20] |
Chen C, Posocco P, Liu X, et al. Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to in vivo efficient gene silencing[J]. Small, 2016, 12(27): 3667-3676.
|
[21] |
Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors[J]. PNAS, 2018, 115(45): 11454-11459.
|
[22] |
Ding L, Lyu Z, Tintaru A, et al. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging[J]. Chem Commun (Camb), 2019, 56(2): 301-304.
|
[23] |
Dong YW, Yu TZ, Ding L, et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy[J]. J Am Chem Soc, 2018, 140(47): 16264-16274.
|
[24] |
Liu XX, Zhou JH, Yu TZ, et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems[J]. Angew Chem Int Ed Engl, 2014, 53(44): 11822-11827.
|
[25] |
Dhumal D, Lan W, Ding L, et al. An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favourable toxicity profile[J]. Nano Research, 2020.
|
[26] |
Walter MV, Malkoch M. Simplifying the synthesis of dendrimers: accelerated approaches[J]. Chem Soc Rev, 2012, 41(13): 4593-4609.
|
[27] |
Grayson SM, Fréchet JM. Convergent dendrons and dendrimers: from synthesis to applications[J]. Chem Rev, 2001, 101(12): 3819-3868.
|
[28] |
Wooley KL, Hawker CJ, Fréchet JM. Hyperbranched macromolecules via a novel double-stage convergent growth approach[J]. J Am Chem Soc, 1991, 113(11): 4252-4261.
|
[29] |
Cao Y, Liu X, Peng L. Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing[J]. Front Chem Sci Eng, 2017, 11(4): 663-675.
|
[30] |
Lehn JM. Toward self-organization and complex matter[J]. Science, 2002, 295(5564): 2400-2403.
|
[31] |
Webber MJ, Appel EA, Meijer EW, et al. Supramolecular biomaterials[J]. Nat Mater, 2016, 15(1): 13-26.
|
[32] |
Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers[J]. Science, 2012, 335(6070): 813-817.
|
[33] |
Lyu Z, Ding L, Dhumal D, et al. CHAPTER 4 Poly(amidoamine) (PAMAM) dendrimers: synthesis and biological applications[M]// The Royal Society of Chemistry. Dendrimer Chemistry: Synthetic Approaches Towards Complex Architectures, 2020: 85-113.
|
[34] |
Mullen DG, Desai A, van Dongen MA, et al. Best practices for purification and characterization of PAMAM dendrimer[J]. Macromolecules, 2012, 45(12): 5316-5320.
|
[35] |
Wu JY, Zhou JH, Qu FQ, et al. Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes[J]. Chem Commun (Camb), 2005(3): 313-315.
|
[36] |
Zhou JH, Wu JY, Hafdi N, et al. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing[J]. Chem Commun (Camb), 2006(22): 2362-2364.
|
[37] |
Liu XX, Wu JY, Yammine M, et al. Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse Thymus[J]. Bioconjug Chem, 2011, 22(12): 2461-2473.
|
[38] |
Ma J, Kala S, Yung S, et al. Blocking stemness and metastatic properties of ovarian cancer cells by targeting p70S6K with dendrimer nanovector-based siRNA delivery[J]. Mol Ther, 2018, 26(1): 70-83.
|
[39] |
Liu XX, Rocchi P, Qu FQ, et al. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells[J]. ChemMedChem, 2009, 4(8): 1302-1310.
|
[40] |
Zhou JH, Neff CP, Liu XX, et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice[J]. Mol Ther, 2011, 19(12): 2228-2238.
|
[41] |
Liu XX, Liu C, Laurini E, et al. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer[J]. Mol Pharm, 2012, 9(3): 470-481.
|
[42] |
Posocco P, Liu XX, Laurini E, et al. Impact of siRNA overhangs for dendrimer-mediated siRNA delivery and gene silencing[J]. Mol Pharm, 2013, 10(8): 3262-3273.
|
[43] |
Kala S, Mak AS, Liu XX, et al. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer[J]. J Med Chem, 2014, 57(6): 2634-2642.
|
[44] |
Liu XX, Liu C, Chen C, et al. Targeted delivery of dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system[J]. Nanomed-Nanotechnol Biol Med, 2014, 10(8): 1627-1636.
|
[45] |
Reebye V, S?trom P, Mintz PJ, et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo[J]. Hepatology, 2014, 59(1): 216-227.
|
[46] |
Cui Q, Yang S, Ye P, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis[J]. Nat Commun, 2016, 7: 10637.
|
[47] |
Huang KW, Reebye V, Czysz K, et al. Liver activation of hepatocellular nuclear factor-4α by small activating RNA rescues dyslipidemia and improves metabolic profile[J]. Mol Ther Nucleic Acids, 2020, 19: 361-370.
|
[48] |
First-in-human safety and tolerability study of MTL-CEBPA in patients with advanced liver cancer[EB/OL].
|
[49] |
Liu X, Wang Y, Chen C, et al. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species[J]. Adv Funct Mater, 2016, 26(47): 8594-8603.
|
[50] |
Liu XX, Liu C, Zhou JH, et al. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer[J]. Nanoscale, 2015, 7(9): 3867-3875.
|
[51] |
Yu TZ, Liu XX, Bolcato-Bellemin AL, et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo[J]. Angew Chem Int Ed Engl, 2012, 51(34): 8478-8484.
|
[52] |
Zhou ZW, Cong M, Li MY, et al. Negative dendritic effect on enzymatic hydrolysis of dendrimer conjugates[J]. Chem Commun (Camb), 2018, 54(47): 5956-5959.
|
[53] |
Ding L, Lyu Z, Louis B, Tintaru A, et al. Surface charge of supramolecular nanosystems for in vivo biodistribution: a microSPECT/CT imaging study[J]. Small, 2020, 16(37):
|
[54] |
Nakase I, Akita H, Kogure K, et al. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides[J]. Acc Chem Res, 2012, 45(7): 1132-1139.
|
[1] | LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402 |
[2] | ZHANG Jing, LI Lun, ZHANG Mei, HU Xiaolong, WANG Hao. Research progress in chemical constituent and pharmacological activity of Punica granatum L.[J]. Journal of China Pharmaceutical University, 2023, 54(4): 421-430. DOI: 10.11665/j.issn.1000-5048.2023032101 |
[3] | SUN Biao, AO Yunlin, WANG Dezhi, WANG Junya, YE Wencai, ZHANG Xiaoqi. Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J]. Journal of China Pharmaceutical University, 2022, 53(2): 178-184. DOI: 10.11665/j.issn.1000-5048.20220207 |
[4] | YANG Xiaojun, AI Fengfeng, LIN Junbing, TANG Jiangjiang. Chemical constituents extracted from Dictamnus dasycarpus and their α-glucosidase inhibitory activity[J]. Journal of China Pharmaceutical University, 2019, 50(1): 41-45. DOI: 10.11665/j.issn.1000-5048.20190105 |
[5] | Pham Thi Anh, LI Junyan, ZHANG Baobao, WANG Hao. Chemical constituents from the n-butanol portions of the fruits of Eucalyptus globulus[J]. Journal of China Pharmaceutical University, 2018, 49(4): 422-426. DOI: 10.11665/j.issn.1000-5048.20180406 |
[6] | MA Lin, ZHANG Yaozhou, DANG Jun. Chemical constituents from water extract of Armillaria luteo-virens[J]. Journal of China Pharmaceutical University, 2016, 47(3): 291-293. DOI: 10.11665/j.issn.1000-5048.20160307 |
[7] | YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305 |
[8] | SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222. |
[9] | Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336. |
[10] | Hypoglycemic Effects of Extracts and Constituents from Euonymus alatus[J]. Journal of China Pharmaceutical University, 2003, (2): 32-35. |