Citation: | HAN Tianjiao, HU Yuxi, FU Hongzheng. Research progress and consideration of polymeric prodrugs[J]. Journal of China Pharmaceutical University, 2019, 50(4): 397-404. DOI: 10.11665/j.issn.1000-5048.20190403 |
[1] |
Bildstein L,Dubernet C,Couvreur P.Prodrug-based intracellular delivery of anticancer agents[J].Adv Drug Deliv Rev,2011,63(1/2):3-23.
|
[2] |
Minko T,Rodriguez-Rodriguez L,Pozharov V.Nanotechnology approaches for personalized treatment of multidrug resistant cancers[J].Adv Drug Deliv Rev,2013,65(13/14):1880-1895.
|
[3] |
Bertrand N, Wu J, Xu XY, et al. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology[J].Adv Drug Deliv Rev,2014,66:2-25.
|
[4] |
Aslan B,Ozpolat B,Sood AK,et al.Nanotechnology in cancer therapy[J].J Drug Target,2013,21(10):904-913.
|
[5] |
Huttunen KM,Raunio H,Rautio J.Prodrugs:from serendipity to rational design[J].Pharmacol Rev,2011,63(3):750-771.
|
[6] |
Mi Y,Zhao J,Feng SS.Prodrug micelle-based nanomedicine for cancer treatment[J].Nanomedicine(Lond),2013,8(10):1559-1562.
|
[7] |
Delplace V,Couvreur P,Nicolas J.Recent trends in the design of anticancer polymer prodrug nanocarriers[J].Polym Chem,2014,5(5):1529-1544.
|
[8] |
Goodarzi N,Varshochian R,Kamalinia G,et al.A review of polysaccharide cytotoxic drug conjugates for cancer therapy[J].Carbohydr Polym,2013,92(2):1280-1293.
|
[9] |
Fang JY,Al-Suwayeh SA.Nanoparticles as delivery carriers for anticancer prodrugs[J].Expert Opin Drug Deliv,2012,9(6):657-669.
|
[10] |
Hobbs SK,Monsky WL,Yuan F,et al.Regulation of transport pathways in tumor vessels:role of tumor type and microenvironment[J].Proc Natl Acad Sci U S A,1998,95(8):4607-4612.
|
[11] |
Duncan R.Polymer conjugates as anticancer nanomedicines[J].Nat Rev Cancer,2006,6(9):688-701.
|
[12] |
Luo C,Sun J,Sun BJ,et al.Prodrug-based nanoparticulate drug delivery strategies for cancer therapy[J].Trends Pharmacol Sci,2014,35(11):556-566.
|
[13] |
Patnaik A,Papadopoulos KP,Tolcher AW,et al.Phase I dose-escalation study of EZN-2208(PEG-SN38),a novel conjugate of poly(ethylene)glycol and SN38,administered weekly in patients with advanced cancer[J].Cancer Chemother Pharmacol,2013,71(6):1499-1506.
|
[14] |
van der Meel R,Vehmeijer LJ,Kok RJ,et al.Ligand-targeted particulate nanomedicines undergoing clinical evaluation:current status[J].Adv Drug Deliv Rev,2013,65(10):1284-1298.
|
[15] |
Detampel P,Witzigmann D,Krähenbühl S,et al.Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes[J].J Drug Target,2014,22(3):232-241.
|
[16] |
van Furth R,Cohn ZA,Hirsch JG,et al.The mononuclear phagocyte system:a new classification of macrophages,monocytes,and their precursor cells[J].Bull World Health Organ,1972,46(6):845-852.
|
[17] |
Bhattacharyya S,Bhattacharya R,Curley S,et al.Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis[J].Proc Natl Acad Sci U S A,2010,107(33):14541-14546.
|
[18] |
Bhattacharyya S,Singh RD,Pagano R,et al.Switching the targeting pathways of a therapeutic antibody by nanodesign[J].Angew Chem Int Ed Engl,2012,51(7):1563-1567.
|
[19] |
Seymour LW,Ferry DR,Anderson D,et al.Hepatic drug targeting:phase I evaluation of polymer-bound doxorubicin[J].J Clin Oncol,2002,20(6):1668-1676.
|
[20] |
Ge ZS,Liu SY.Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J].Chem Soc Rev,2013,42(17):7289-7325.
|
[21] |
Hu JM,Liu SY.Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J].ACC Chem Res,2014,47(7):2084-2095.
|
[22] |
Yin Q,Shen JN,Zhang ZW,et al.Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor[J].Adv Drug Deliv Rev,2013,65(13/14):1699-1715.
|
[23] |
MacEwan SR,Callahan DJ,Chilkoti A.Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery[J].Nanomedicine(Lond),2010,5(5):793-806.
|
[24] |
Tang RP,Ji WH,Panus D,et al.Block copolymer micelles with acid-labile ortho ester side-chains:synthesis,characterization,and enhanced drug delivery to human glioma cells[J].J Control Release,2011,151(1):18-27.
|
[25] |
Li XQ,Wen HY,Dong HQ,et al.Self-assembling nanomicelles of a novel camptothecin prodrug engineered with a redox-responsive release mechanism[J].Chem Commun(Camb),2011,47(30):8647-8649.
|
[26] |
She WC,Li N,Luo K,et al.Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy[J].Biomaterials,2013,34(9):2252-2264.
|
[27] |
She WC,Luo K,Zhang CY,et al.The potential of self-assembled,pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy[J].Biomaterials,2013,34(5):1613-1623.
|
[28] |
Lu DX,Wen XT,Liang J,et al.A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate[J].J Biomed Mater Res Part B Appl Biomater,2009,89(1):177-183.
|
[29] |
Koning C,Ikker A,Borggreve R,et al.Reactive blending of poly(styrene-co-maleic anhydride)with poly(phenylene oxide)by addition of α-amino-polystyrene[J].Polymer,1993,34(21):4410-4416.
|
[30] |
Akram M,Wang L,Yu HJ,et al.Polyphophazenes as anti-cancer drug carriers:from synthesis to application[J].Prog Polym Sci,2014,39(12):1987-2009.
|
[31] |
Ríhová B, Etrych T, Pechar M, et al. Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes[J].J Control Release,2001,74(1/2/3):225-232.
|
[32] |
Zhan FX,Chen W,Wang ZJ,et al.Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release[J].Biomacromolecules,2011,12(10):3612-3620.
|
[33] |
Chu KS,Finniss MC,Schorzman AN,et al.Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity[J].Nano Lett,2014,14(3):1472-1476.
|
[34] |
Gu YD,Zhong YN,Meng FH,et al.Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy[J].Biomacromolecules,2013,14(8):2772-2780.
|
[35] |
Zhou ZX,Ma XP,Jin EL,et al.Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery[J].Biomaterials,2013,34(22):5722-5735.
|
[36] |
Zhou ZX,Ma XP,Jin EL,et al.Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery[J].Biomaterials,2013,34(22):5722-5735.
|
[37] |
Eloi JC,Rider DA,Cambridge G,et al.Stimulus-responsive self-assembly:reversible,redox-controlled micellization of polyferrocenylsilane diblock copolymers[J].J Am Chem Soc,2011,133(23):8903-8913.
|
[38] |
Takakusagi Y,Takakusagi K,Kuramochi K,et al.Identification of C10 biotinylated camptothecin(CPT-10-B)binding peptides using T7 phage display screen on a QCM device[J].Bioorg Med Chem,2007,15(24):7590-7598.
|
[39] |
Tang C,Feller L,Rossbach P,et al.Adsorption and electrically stimulated desorption of the triblock copolymer poly(propylene sulfide-bl-ethylene glycol)(PPS-PEG)from indium tin oxide(ITO)surfaces[J].Surf Sci,2006,600(7):1510-1517.
|
[40] |
Conover CD,Greenwald RB,Pendri A,et al.Camptothecin delivery systems:enhanced efficacy and tumor accumulation of camptothecin following its conjugation to polyethylene glycol via a Glycine linker[J].Cancer Chemother Pharmacol,1998,42(5):407-414.
|
[41] |
Deng T,Mao XL,Xiao Y,et al.Monodisperse oligoethylene glycols modified Camptothecin,10-hydroxycamptothecin and SN38 prodrugs[J].Bioorg Med Chem Lett,2019,29(4):581-584.
|
[42] |
Luo C,Sun J,Sun BJ,et al.Prodrug-based nanoparticulate drug delivery strategies for cancer therapy[J].Trends Pharmacol Sci,2014,35(11):556-566.
|
[43] |
Yang Y,Pan DY,Luo K,et al.Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy[J].Biomaterials,2013,34(33):8430-8443.
|
[44] |
Dai YL,Xiao HH,Liu JH,et alIn vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles[J].J Am Chem Soc,2013,135(50):18920-18929.
|
[45] |
Bhattacharyya J,Bellucci JJ,Weitzhandler I,et al.A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms abraxane in multiple murine cancer models[J].Nat Commun,2015,6:7939.
|
[46] |
Frascione D,Diwoky C,Almer G,et al.Ultrasmall superparamagnetic iron oxide(USPIO)-based liposomes as magnetic resonance imaging probes[J].Int J Nanomedicine,2012,7:2349-2359.
|
[47] |
Xiao HH,Noble GT,Stefanick JF,et al.Photosensitive Pt(IV)-azide prodrug-loaded nanoparticles exhibit controlled drug release and enhanced efficacy in vivo[J].J Control Release,2014,173:11-17.
|
[48] |
Eldar-Boock A,Polyak D,Scomparin A,et al.Nano-sized polymers and liposomes designed to deliver combination therapy for cancer[J].Curr Opin Biotechnol,2013,24(4):682-689.
|
[49] |
Lammers T,Subr V,Ulbrich K,et al.Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy[J].Nano Today,2010,5(3):197-212.
|
[50] |
Park SR,Davis M,Doroshow JH,et al.Safety and feasibility of targeted agent combinations in solid tumours[J].Nat Rev Clin Oncol,2013,10(3):154-168.
|
[51] |
Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy[J].Proc Natl Acad Sci U S A,2010,107(42):17939-17944.
|
[52] |
Duan XP,Xiao JS,Yin Q,et al.Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram[J].ACS Nano,2013,7(7):5858-5869.
|
[1] | SUN Xiaofeng, LIU Tao, LING Yun, CHEN Zhengwei, PAN Zihao, XU Zite, LUO Ling. Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J]. Journal of China Pharmaceutical University, 2019, 50(6): 641-647. DOI: 10.11665/j.issn.1000-5048.20190602 |
[2] | WU Yanqing, CAO Qingqing, ZHANG Ting, ZHAI Yu, LI Wenping, YANG Jin. Effects of clinical P-glycoprotein inhibitors on oral bioavailability and brain penetration of gefitinib[J]. Journal of China Pharmaceutical University, 2019, 50(2): 206-212. DOI: 10.11665/j.issn.1000-5048.20190212 |
[3] | XIE Zhen, WANG Xueyan, ZHAO Xin, ZHANG Jingzhao, TANG Xudong. Pharmackinetics of Reduning injection for nasal administration in rabbits[J]. Journal of China Pharmaceutical University, 2016, 47(5): 599-602. DOI: 10.11665/j.issn.1000-5048.20160516 |
[4] | ZHANG Yaqi, HUANG Yanting, GAO Yuan, ZHANG Jianjun. Thermodynamics of baicalein-nicotinamide co-crystallization process[J]. Journal of China Pharmaceutical University, 2015, 46(5): 568-574. DOI: 10.11665/j.issn.1000-5048.20150509 |
[5] | HE Wei, QI Haixia, DONG Lei, ZHANG Junfeng. Research advances in drug delivery system targeting immune system[J]. Journal of China Pharmaceutical University, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501 |
[6] | GE Liang, LU Man, CHEN Yue-jian, CHEN Yan-hua. In vitro release and the liver targeting of oxymatrine polybutylcyanoacrylate nanoparticles[J]. Journal of China Pharmaceutical University, 2010, 41(6): 520-523. |
[7] | Pharmacodynamics Research of Insulin Microemulsion through Colon Administration in Rats[J]. Journal of China Pharmaceutical University, 2004, (6): 10-13. |
[8] | Synthesis of Biodegradable Anhydride-co-imide Terpolymer[J]. Journal of China Pharmaceutical University, 2000, (5): 3-6. |
[9] | The Factors Influencing on Cefaclor Release From Sustained Release Tablets[J]. Journal of China Pharmaceutical University, 1999, (6): 19-21. |
[10] | DETERMINATION OF RELEASE RATE,MYOTIC ACTIVITY AND IRRITATION OF CONTROLLED- RELEASE PILOCARPINE OPHTHALMIC FILM[J]. Journal of China Pharmaceutical University, 1985, (1): 21-27. |
1. |
刘梦梦,陈行,钱洁成,冯兰妮,魏如婷,陈建明,武鑫. 雷公藤甲素前药脂质体纳米递送系统的构建及抗胰腺癌活性评价. 中国药学杂志. 2024(10): 911-920 .
![]() | |
2. |
徐玉怡,王东凯. 基于肿瘤微环境设计的高分子前药的研究进展. 中国药剂学杂志(网络版). 2023(03): 158-165 .
![]() |