• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
HE Wei, QI Haixia, DONG Lei, ZHANG Junfeng. Research advances in drug delivery system targeting immune system[J]. Journal of China Pharmaceutical University, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501
Citation: HE Wei, QI Haixia, DONG Lei, ZHANG Junfeng. Research advances in drug delivery system targeting immune system[J]. Journal of China Pharmaceutical University, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501

Research advances in drug delivery system targeting immune system

More Information
  • Drug delivery system targeting immune system plays an important role in the treatment of inflammatory diseases. Drug delivery system targeting immune system could target immune cells or immune organs. It could be divided into active targeting mediated by the interaction of ligand-receptor or antigen-antibody and passive targeting mediated by pH, particles and so on. This review summarizes new progress for drug delivery system targeting immune system, which provides a theoretical reference for designing the safe and effective drug delivery system and providing efficient and safe treatment for inflammatory diseases.
  • [1]
    Lopalco G,Cantarini L,Vitale A,et al.Interleukin-1 as a common denominator from autoinflammatory to autoimmune disorders:premises,perils,and perspectives[J].Mediators Inflamm,2015,2015:194864.
    [2]
    Monti P,Bonifacio E.Interleukin-7 and type 1 diabetes[J].Curr Diab Rep,2014,14(9):518.
    [3]
    Singh A,Talekar M,Raikar A,et al.Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases[J].J Control Release,2014,190:515-530.
    [4]
    Murray PJ,Wynn TA.Protective and pathogenic functions of macrophage subsets[J].Nat Rev Immunol,2011,11(11):723-737.
    [5]
    Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.
    [6]
    Ruffell B,Affara NI,Coussens LM.Differential macrophage programming in the tumor microenvironment[J].Trends Immunol,2012,33(3):119-126.
    [7]
    Nakashima-Matsushita N, Homma T, Yu S, et al. Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis[J].Arthritis Rheum,1999,42(8):1609-1616.
    [8]
    Bilthariya U,Jain N,Rajoriya V,et al.Folate-conjugated albumin nanoparticles for rheumatoid arthritis-targeted delivery of etoricoxib[J].Drug Dev Ind Pharm,2015,41(1):95-104.
    [9]
    Thomas TP,Goonewardena SN,Majoros IJ,et al.Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis[J].Arthritis Rheum,2011,63(9):2671-2680.
    [10]
    Ayala-Lopez W,Xia W,Varghese B,et al.Imaging of atherosclerosis in apoliprotein e knockout mice:targeting of a folate-conjugated radiopharmaceutical to activated macrophages[J].J Nucl Med,2010,51(5):768-774.
    [11]
    Furusho Y,Miyata M,Matsuyama T,et al.Novel therapy for atherosclerosis using recombinant immunotoxin against folate receptor beta-expressing macrophages[J].J Am Heart Assoc,2012,1(4):e3079.
    [12]
    Taylor PR, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition[J].Annu Rev Immunol,2005,23:901-944.
    [13]
    Stahl P,Schlesinger PH,Sigardson E,et al.Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages:characterization and evidence for receptor recycling[J].Cell,1980,19(1):207-215.
    [14]
    Kriegel C,Amiji M.Oral TNF-alpha gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease[J].J Control Release,2011,150(1):77-86.
    [15]
    Xiao B,Laroui H,Ayyadurai S,et al.Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy[J].Biomaterials,2013,34(30):7471-7482.
    [16]
    Asthana GS,Asthana A,Kohli DV,et al.Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting[J].Biomed Res Int,2014,2014:526391.
    [17]
    Huang Z,Gan J,Jia L,et al.An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease[J].Biomaterials,2015,48:26-36.
    [18]
    Solinas G,Germano G,Mantovani A,et al.Tumor-associated macrophages(TAM)as major players of the cancer-related inflammation[J].J Leukocyte Biol,2009,86(5):1065-1073.
    [19]
    Amoozgar Z,Goldberg MS.Targeting myeloid cells using nanoparticles to improve cancer immunotherapy[J].Adv Drug Deliv Rev,2014,doi: 10.1016/j.addr.2014.09.007.
    [20]
    Zhan X,Jia L,Niu Y,et al.Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy[J].Biomaterials,2014,35(38):10046-10057.
    [21]
    Huang Z,Yang Y,Jiang Y,et al.Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers[J].Biomaterials,2013,34(3):746-755.
    [22]
    Kono Y,Kawakami S,Higuchi Y,et al.Antitumor effect of nuclear factor-kappaB decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites[J].Cancer Sci,2014,105(8):1049-1055.
    [23]
    Locke LW,Mayo MW,Yoo AD,et al.PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes[J].Biomaterials,2012,33(31):7785-7793.
    [24]
    Zuo L,Huang Z,Dong L,et al.Targeting delivery of anti-TNF alpha oligonucleotide into activated colonic macrophages protects against experimental colitis[J].Gut,2010,59(4):470-479.
    [25]
    Dong L,Gao S,Diao H,et al.Galactosylated low molecular weight chitosan as a carrier delivering oligonucleotides to Kupffer cells instead of hepatocytes in vivo[J].J Biomed Mater Res A,2008,84(3):777-784.
    [26]
    Huang Z,Zhang Z,Jiang Y,et al.Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunothe-rapy[J].J Control Release,2012,158(2):286-292.
    [27]
    Jain S,Amiji M.Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system[J].Biomacromolecules,2012,13(4):1074-1085.
    [28]
    Jain S,Amiji M.Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system[J].Biomacromolecules,2012,13(4):1074-1085.
    [29]
    Laroui H,Geem D,Xiao B,et al.Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles[J].Mol Ther,2014,22(1):69-80.
    [30]
    Kriegel C,Amiji MM.Dual TNF-alpha/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease[J].Clin Transl Gastroenterol,2011,2:e2.
    [31]
    Khan S,Greenberg JD,Bhardwaj N.Dendritic cells as targets for therapy in rheumatoid arthritis[J].Nat Rev Rheumatol,2009,5(10):566-571.
    [32]
    Zhou L,Chong MM,Littman DR.Plasticity of CD4+ T cell lineage differentiation[J].Immunity,2009,30(5):646-655.
    [33]
    Ohnmacht C,Pullner A,King SB,et al.Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity[J].J Exp Med,2009,206(3):549-559.
    [34]
    Hamdy S,Haddadi A,Hung RW,et al.Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations[J].Adv Drug Deliv Rev,2011,63(10/11):943-955.
    [35]
    Pichon C,Midoux P.Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA[J].Methods Mol Biol,2013,969:247-274.
    [36]
    Li P,Chen S,Jiang Y,et al.Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholesterol as a potential carrier for DNA vaccine[J].Nanotechnology,2013,24(29):295101.
    [37]
    Rosalia RA,Cruz LJ,van Duikeren S,et al.CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses[J].Biomaterials,2015,40:88-97.
    [38]
    Ejaz A,Ammann CG,Werner R,et al.Targeting viral antigens to CD11c on dendritic cells induces retrovirus-specific T cell responses[J].PLoS One,2012,7(9):e45102.
    [39]
    Ahonen CL,Doxsee CL,McGurran SM,et al.Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN[J].J Exp Med,2004,199(6):775-784.
    [40]
    Manolova V,Flace A,Bauer M,et al.Nanoparticles target distinct dendritic cell populations according to their size[J].Eur J Immunol,2008,38(5):1404-1413.
    [41]
    Ruff LE,Mahmoud EA,Sankaranarayanan J,et al.Antigen-loaded pH-sensitive hydrogel microparticles are taken up by dendritic cells with no requirement for targeting antibodies[J].Integr Biol(Camb),2013,5(1):195-203.
    [42]
    Baleeiro RB,Wiesmuller KH,Reiter Y,et al.Topical vaccination with functionalized particles targeting dendritic cells[J].J Invest Dermatol,2013,133(8):1933-1941.
    [43]
    Saluja SS,Hanlon DJ,Sharp FA,et al.Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen[J].Int J Nanomedicine,2014,9:5231-5246.
    [44]
    Cruz LJ,Rueda F,Simon L,et al.Liposomes containing NYESO1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines[J].Nanomedicine(Lond),2014,9(4):435-449.
    [45]
    Hamdy S,Molavi O,Ma Z,et al.Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity[J].Vaccine,2008,26(39):5046-5057.
    [46]
    Nikitczuk KP, Schloss RS, Yarmush ML, et al. PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-gamma response and enhances survival[J].J Cancer Ther,2013,4(1):280-290.
    [47]
    Mueller M,Reichardt W,Koerner J,et al.Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice[J].J Control Release,2012,162(1):159-166.
    [48]
    Heit A,Schmitz F,Haas T,et al.Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity[J].Eur J Immunol,2007,37(8):2063-2074.
    [49]
    Palumbo RN,Nagarajan L,Wang C.Recombinant monomeric CD40 ligand for delivering polymer particles to dendritic cells[J].Biotechnol Prog,2011,27(3):830-837.
    [50]
    Bourquin C,Anz D,Zwiorek K,et al.Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity[J].J Immunol,2008,181(5):2990-2998.
    [51]
    Machy P,Serre K,Leserman L.Class I-restricted presentation of exogenous antigen acquired by Fcγ receptor-mediated endocytosis is regulated in dendritic cells[J].Eur J Immunol,2000,30(3):848-857.
    [52]
    Prasad S,Cody V,Saucier-Sawyer JK,et al.Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy[J].Nanomedicine,2011,7(1):1-10.
    [53]
    Solbrig CM,Saucier-Sawyer JK,Cody V,et al.Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells[J].Mol Pharm,2007,4(1):47-57.
    [54]
    Prasad S,Cody V,Saucier-Sawyer JK,et al.Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy[J].Nanomedicine,2011,7(1):1-10.
    [55]
    Pateinakis P,Pyrpasopoulou A.Targeting the B-cell pathway in lupus nephritis:current evidence and future perspectives[J].Scientific World Journal,2013,2013:745239.
    [56]
    Ding Q,Chen J,Wei X,et al.RAFTsomes containing epitope-MHC-II complexes mediated CD4+ T cell activation and antigen-specific immune responses[J].Pharm Res,2013,30(1):60-69.
    [57]
    Boot EP,Koning GA,Storm G,et al.CD134 as target for specific drug delivery to auto-aggressive CD4+ T cells in adjuvant arthritis[J].Arthritis Res Ther,2005,7(3):R604-R615.
    [58]
    Mezzaroba N,Zorzet S,Secco E,et al.New potential therapeutic approach for the treatment of B-Cell malignancies using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles[J].PLoS One,2013,8(9):e74216.
    [59]
    Mao Y,Triantafillou G,Hertlein E,et al.Milatuzumab-conjugated liposomes as targeted dexamethasone carriers for therapeutic delivery in CD74+ B-cell malignancies[J].Clin Cancer Res,2013,19(2):347-356.
    [60]
    Chen WC,Completo GC,Sigal DS,et al.In vivo targeting of B-cell lymphoma with glycan ligands of CD22[J].Blood,2010,115(23):4778-4786.
    [61]
    Cheng WW,Allen TM.Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma:a comparison of whole monoclonal antibody,Fab′ fragments and single chain Fv[J].J Control Release,2008,126(1):50-58.
    [62]
    Zhang XY,Lu WY.Recent advances in lymphatic targeted drug delivery system for tumor metastasis[J].Cancer Biol Med,2014,11(4):247-254.
    [63]
    Flanagan J,Singh H.Microemulsions:a potential delivery system for bioactives in food[J].Crit Rev Food Sci Nutr,2006,46(3):221-237.
    [64]
    He XW,Liu T,Chen YX,et al.Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo[J].Cancer Gene Ther,2008,15(3):193-202.
    [65]
    Yan Z,Zhan C,Wen Z,et al.LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics[J].Nanotechnology,2011,22(41):415103.
    [66]
    Feng L,Zhang L,Liu M,et al.Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system[J].J Drug Target,2010,18(3):168-178.
    [67]
    Tiantian Y,Wenji Z,Mingshuang S,et al.Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome:influence of formulation factors on the lymphatic targeting[J].Int J Pharm,2014,471(1/2):245-257.
    [68]
    Cobaleda-Siles M,Henriksen-Lacey M,Ruiz DAA,et al.An iron oxide nanocarrier for dsRNA to target lymph nodes and strongly activate cells of the immune system[J].Small,2014,10(24):5054-5067.
    [69]
    Aji AM,Chacko AJ,Jose S,et al.Lopinavir loaded solid lipid nanoparticles(SLN)for intestinal lymphatic targeting[J].Eur J Pharm Sci,2011,42(1/2):11-18.
    [70]
    Huang Z,Zhang Z,Zha Y,et al.The effect of targeted delivery of anti-TNF-alpha oligonucleotide into CD169+ macrophages on disease progression in lupus-prone MRL/lpr mice[J].Biomaterials,2012,33(30):7605-7612.
  • Related Articles

    [1]LI Yue, XU Kai, YANG Rui, YANG Huiying. Application of ultra-high performance convergence chromatography-tandem quadrupole time-of-flight mass spectrometry in the analysis of Span composition[J]. Journal of China Pharmaceutical University, 2024, 55(6): 742-749. DOI: 10.11665/j.issn.1000-5048.2024010502
    [2]YAO Chunlu, ZHANG Weijie, ZHANG Yunlong, DENG Zhaoxia, WANG Mengling, ZHANG Zuoling, WANG Chen, SONG Qinxin, ZOU Bingjie. Progress of single-cell protein imaging methods[J]. Journal of China Pharmaceutical University, 2024, 55(2): 147-157. DOI: 10.11665/j.issn.1000-5048.2024010205
    [3]ZHANG Dongxue, QIAO Liang. Microfluidic chip and mass spectrometry-based detection of bacterial antimicrobial resistance and study of antimicrobial resistance mechanism[J]. Journal of China Pharmaceutical University, 2023, 54(6): 695-705. DOI: 10.11665/j.issn.1000-5048.2023060203
    [4]LI Mengxiao, LI Huilin. Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations[J]. Journal of China Pharmaceutical University, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901
    [5]JIA Yifei, WANG Yamei, LI Gongyu. Recent progress of protein glycosylation characterization utilizing native conformer-resolved mass spectrometry[J]. Journal of China Pharmaceutical University, 2023, 54(6): 674-681. DOI: 10.11665/j.issn.1000-5048.2023060901
    [6]WANG Songkai, ZOU Yuchen, SUN Shipeng, YAN Zhiye, TANG Weiwei, LI Ping, LI Bin. Recent advances in mass spectrometry imaging and its application in drug research[J]. Journal of China Pharmaceutical University, 2023, 54(6): 653-661. DOI: 10.11665/j.issn.1000-5048.2023091901
    [7]LI Yan, JIA Huanhuan, HUANG Qing, YUAN Yaozuo, CHEN Minhui, ZHANG Jinlin. Impurity spectra of lansoprazole enteric-coated preparations by high performance liquid chromatography-high resolution orbital trap mass spectrometry[J]. Journal of China Pharmaceutical University, 2023, 54(5): 577-585. DOI: 10.11665/j.issn.1000-5048.2023042601
    [8]CAO Guoxiu, LU Wenjie, YE Hui, TIAN Yang, HAO Haiping. Rapid identification of constituents from different Ginkgo biloba preparations by high resolution mass spectrometry and metabolomics technology[J]. Journal of China Pharmaceutical University, 2018, 49(4): 441-448. DOI: 10.11665/j.issn.1000-5048.20180409
    [9]YE Hui, WANG Yun, WANG Lin, XU Xiaowei, WU Mengqiu, CAO Guoxiu, LIANG Yan, WANG Guangji. Rhein:a novel matrix for profiling and imaging of endogenous metabolites by matrix-assisted laser desorption/ionization-mass spectrometry[J]. Journal of China Pharmaceutical University, 2016, 47(6): 727-733. DOI: 10.11665/j.issn.1000-5048.20160616
    [10]LI Xinxin, WU Huan, WANG Chen, FENG Fang. Mass spectrometry imaging and its application in pharmaceutical sciences[J]. Journal of China Pharmaceutical University, 2014, 45(1): 17-25. DOI: 10.11665/j.issn.1000-5048.20140103

Catalog

    Article views (1291) PDF downloads (3050) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return