Citation: | ZHAO Mengqi, LIAO Hong. Researches progress of the relationship between neuro-inflammation and cognitive function[J]. Journal of China Pharmaceutical University, 2019, 50(4): 497-504. DOI: 10.11665/j.issn.1000-5048.20190416 |
[1] |
Tripathi A,Paliwal P,Krishnamurthy S,et al.Piracetam attenuates LPS-induced neuroinflammation and cognitive impairment in rats[J].Cell Mol Neurobiol,2017,37(8):1373-1386.
|
[2] |
Yin F,Sancheti H,Patil I,et al.Energy metabolism and inflammation in brain aging and Alzheimer′s disease[J].Free Radic Biol Med,2016,100:108-122.
|
[3] |
Regen F,Hellmann-Regen J,Costantini E,et al.Neuroinflammation and Alzheimer′s disease:implications for microglial activation[J].Curr Alzheimer Res,2017,14(11):1140-1148.
|
[4] |
Fang YQ,Yan J,Li CH,et al.The Nogo/Nogo receptor(NgR)signal is involved in neuroinflammation through the regulation of microglial inflammatory activation[J].J Biol Chem,2015,290(48):28901-28914.
|
[5] |
Kohler O,Krogh J,Mors O,et al.Inflammation in depression and the potential for anti-inflammatory treatment[J].Curr Neuropharmacol,2016,14(7):732-742.
|
[6] |
Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder[J].J Affect Disord,2014,169:15-20.
|
[7] |
Tuttolomondo A,Pecoraro R,Pinto A.Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma:a review of the evidence to date[J].Drug Des Devel Ther,2014,7(8):2221-2238.
|
[8] |
Burda JE,Bernstein AM,Sofroniew MV.Astrocyte roles in traumatic brain injury[J].Exp Neurol,2016,275(3):305-315.
|
[9] |
Xu C,Fu F,Li XH,et al.Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury[J].Int J Neurosci,2017,127(12):1124-1135.
|
[10] |
Jassam YN,Izzy S,Whalen M,et al.Neuroimmunology of traumatic brain injury:time for a paradigm shift[J].Neuron,2017,95(6):1246-1265.
|
[11] |
Pimplikar SW.Neuroinflammation in Alzheimer′s disease:from pathogenesis to a therapeutic target[J].J Clin Immunol,2014,34(Suppl 1):S64-69.
|
[12] |
Balducci C,Frasca A,Zotti M,et al.Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer′s disease[J].Brain Behav Immun,2017,60:188-197.
|
[13] |
Chen L, Hu LJ, Zhao JJ, et al. Chotosan improves Aβ1-42-induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-κB signaling in mice[J].J Ethnopharmacol,2016,191:398-407.
|
[14] |
Wang S,Zhang XW,Zhai LY,et al.Atorvastatin attenuates cognitive deficits and neuroinflammation induced by Aβ1-42 involving modulation of TLR4/TRAF6/NF-κB pathway[J].J Mol Neurosci,2018,64(3):363-373.
|
[15] |
Qiang WJ,Cai WY,Yang Q,et al.Artemisinin B improves learning and memory impairment in AD dementia mice by suppressing neuroinflammation[J].Neuroscience,2018,395:1-12.
|
[16] |
He PD, Yan SK, Zheng JJ, et al. Eriodictyol attenuates LPS-induced neuroinflammation,amyloidogenesis,and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells[J].J Agric Food Chem,2018,66(39):10205-10214.
|
[17] |
Pandey GN,Rizavi HS,Ren XG,et al.Toll-like receptors in the depressed and suicide brain[J].J Psychiatr Res,2014,53:62-68.
|
[18] |
Tan SJ,Wang Y,Chen K,et al.Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice[J].Biol Pharm Bull,2017,40(8):1260-1267.
|
[19] |
Wang YH,Xu JJ,Liu Y,et al.TLR4-NF-κB signal involved in depressive-like behaviors and cytokine expression of frontal cortex and hippocampus in stressed C57BL/6 and ob/ob mice[J].Neural Plast,2018,72(54):7254016.
|
[20] |
Gong H,Su WJ,Cao ZY,et al.Hippocampal mrp8/14 signaling plays a critical role in the manifestation of depressive-like behaviors in mice[J].J Neuroinflammation,2018,15(1):252.
|
[21] |
Aboul-Fotouh S,Habib M,Asaad T,et al.Behavioral effects of toll-like receptor-4 antagonist ‘eritoran’ in an experimental model of depression:role of prefrontal and hippocampal neurogenesis and γ-aminobutyric acid/glutamate balance[J].Behav Pharmacol,2018,29(5):413-425.
|
[22] |
Yao XL,Liu SW,Ding W,et al.TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice[J].J Neuroimmunol,2017,310:38-45.
|
[23] |
Braun M,Vaibhav K,Saad N,et al.Activation of myeloid TLR4 mediates T lymphocyte polarization after traumatic brain injury[J].J Immunol,2017,198(9):3615-3626.
|
[24] |
Li Y, Korgaonkar AA, Swietek B, et al. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury[J].Neurobiol Dis,2015,74:240-253.
|
[25] |
Jiang HS,Wang YZ,Liang X,et al.Toll-Like receptor 4 knockdown attenuates brain damage and neuroinflammation after traumatic brain injury via inhibiting neuronal autophagy and astrocyte activation[J].Cell Mol Neurobiol,2018,38(5):1009-1019.
|
[26] |
Zhang DD,Li H,Li T,et al.TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury:implication in the treatment of human brain injury[J].Neurochem Int,2014,75:11-18.
|
[27] |
Ye YQ, Xu HY, Zhang X, et al. Association between toll-like receptor 4 expression and neural stem cell proliferation in the hippocampus following traumatic brain injury in mice[J].Int J Mol Sci,2014,15(7):12651-12664.
|
[28] |
Corrigan F,Arulsamy A,Collins-Praino LE,et al.Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation[J].Brain Behav Immun,2017,64:124-139.
|
[29] |
Fujita K,Motoki K,Tagawa K,et al.HMGB1,a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS,is a potential therapeutic target for Alzheimer′s disease[J].Sci Rep,2016,6:31895.
|
[30] |
Festoff BW,Sajja RK,van Dreden P,et al.HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer′s disease[J].J Neuroinflammation,2016,13(1):194.
|
[31] |
Foo H,Ng KP,Tan J,et al.Interaction between APOE-ε4 and HMGB1 is associated with widespread cortical thinning in mild cognitive impairment[J].J Neurol Neurosurg Psychiatry,2018,89(2):225-226.
|
[32] |
Wang B, Lian YJ, Su WJ, et al. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway[J].Brain Behav Immun,2018,72:51-60.
|
[33] |
Lian YJ, Gong H, Wu TY, et al. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1[J].Brain Behav Immun,2017,59:322-332.
|
[34] |
Wu TY, Liu L, Zhang W, et al. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior[J].J Psychiatr Res,2015,64:99-106.
|
[35] |
Okuma Y,Liu KY,Wake H,et al.Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction[J].Neuropharmacology,2014,85:18-26.
|
[36] |
Okuma Y,Liu KY,Wake H,et al.Anti-high mobility group box-1 antibody therapy for traumatic brain injury[J].Ann Neurol,2012,72(3):373-384.
|
[37] |
Paudel YN,Shaikh MF,Chakraborti A,et al.HMGB1:a common biomarker and potential target for TBI,neuroinflammation,epilepsy,and cognitive dysfunction[J].Front Neurosc,2018,12:628.
|
[38] |
Nakaizumi K,Ouchi Y,Terada T,et al.In vivo depiction of α7 nicotinic receptor loss for cognitive decline in Alzheimer′s disease[J].J Alzheimers Dis,2018,61(4):1355-1365.
|
[39] |
Pirttimaki TM,Codadu NK,Awni A,et al.α7 Nicotinic receptor-mediated astrocytic gliotransmitter release:Aβ effects in a preclinical Alzheimer′s mouse model[J].PLoS One,2013,8(11):e81828.
|
[40] |
Inestrosa NC,Godoy JA,Vargas JY,et al.Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation[J].Neuromolecular Med,2013,15(3):549-569.
|
[41] |
Wang CH,Chen TT,Li GX,et al.Simvastatin prevents β-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate[J].Neuropharmacology,2015,97:122-132.
|
[42] |
Niemegeers P,de Boer P,Schuermans J,et al.Digging deeper in the differential effects of inflammatory and psychosocial stressors in remitted depression:effects on cognitive functioning[J].J Affect Disord,2019,245:356-363.
|
[43] |
Zhao D,Xu X,Pan L,et al.Pharmacologic activation of cholinergic alpha7 nicotinic receptors mitigates depressive-like behavior in a mouse model of chronic stress[J].J Neuroinflammation,2017,14(1):234.
|
[44] |
Schmöle AC,Lundt R,Ternes S,et al.Cannabinoid receptor 2 deficiency results in reduced neuroinflammation in an Alzheimer′s disease mouse model[J].Neurobiol Aging,2015,36(2):710-719.
|
[45] |
Stumm C,Hiebel C,Hanstein R,et al.Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer′s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition[J].Neurobiol Aging,2013,34(11):2574-2584.
|
[46] |
Jayant S,Sharma BM,Bansal R,et al.Pharmacological benefits of selective modulation of cannabinoid receptor type 2(CB2)in experimental Alzheimer′s disease[J].Pharmacol Biochem Behav,2016,140:39-50.
|
[47] |
Wu J,Hocevar M,Foss JF,et al.Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer′s disease[J].Eur J Pharmacol,2017,811:12-20.
|
[48] |
Haj-Mirzaian A,Amini-Khoei H,Haj-Mirzaian A,et al.Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress[J].Brain Res Bull,2017,130:200-210.
|
[49] |
Kruk-Slomka M,Michalak A,Biala G,et al.Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice:mechanism of action and possible interactions with cholinergic system[J].Behav Brain Res,2015,284:24-36.
|
[1] | PEI Xin, LI Guideng, CHU Weihua. Progress of proximity labeling technology in membrane protein interaction[J]. Journal of China Pharmaceutical University, 2024, 55(2): 158-166. DOI: 10.11665/j.issn.1000-5048.2023041303 |
[2] | YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503 |
[3] | WANG Zhenghao, GAO Yafeng, ZHANG Lianjun, LIU Chang. Research progress of T cell anti-tumor function regulated by endoplasmic reticulum stress[J]. Journal of China Pharmaceutical University, 2022, 53(5): 518-524. DOI: 10.11665/j.issn.1000-5048.20220502 |
[4] | BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403 |
[5] | WANG Tianshuai, YU Junjie, ZHANG Yan, ZENG Jinjin, CUI Jingxin. Advances in platinum-intercalators of DNA as antitumor agents[J]. Journal of China Pharmaceutical University, 2019, 50(5): 505-515. DOI: 10.11665/j.issn.1000-5048.20190501 |
[6] | GUO Yahui, LU Peng, WANG Yubin, ZHANG Huibin. Progress in the researches for antitumor NEDD8 activating enzyme inhibitors[J]. Journal of China Pharmaceutical University, 2017, 48(6): 646-653. DOI: 10.11665/j.issn.1000-5048.20170603 |
[7] | ZHANG Danfeng, JIAO Yu, LIU Yong, ZHANG Yanmin, ZHANG Zhimin, LU Tao. Progress of small molecule anti-tumor covalent drugs[J]. Journal of China Pharmaceutical University, 2017, 48(1): 1-7. DOI: 10.11665/j.issn.1000-5048.20170101 |
[8] | YAO Aihong, CHANG Yujie, JIANG Cheng, SUN Haiying. Research progress of Polo-like kinase 1 inhibitors targeting Polo-box domain[J]. Journal of China Pharmaceutical University, 2016, 47(1): 1-8. DOI: 10.11665/j.issn.1000-5048.20160101 |
[9] | ZHANG Jinghui, WANG Yajing, HU Rong. Roles of Moesin in tumor progression[J]. Journal of China Pharmaceutical University, 2015, 46(3): 371-375. DOI: 10.11665/j.issn.1000-5048.20150319 |
[10] | LI Linhu, CHEN Li, XIA Yufeng. Progress in the study of coumarin derivatives as antitumor agents[J]. Journal of China Pharmaceutical University, 2013, 44(4): 374-379. DOI: 10.11665/j.issn.1000-5048.20130417 |