• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CAO Jie, ZHU Zhiling, YUAN Meng, KE Xue. Effect and evaluation of microenvironment pH on dissolution behavior of indomethacin solid dispersion[J]. Journal of China Pharmaceutical University, 2019, 50(6): 686-693. DOI: 10.11665/j.issn.1000-5048.20190608
Citation: CAO Jie, ZHU Zhiling, YUAN Meng, KE Xue. Effect and evaluation of microenvironment pH on dissolution behavior of indomethacin solid dispersion[J]. Journal of China Pharmaceutical University, 2019, 50(6): 686-693. DOI: 10.11665/j.issn.1000-5048.20190608

Effect and evaluation of microenvironment pH on dissolution behavior of indomethacin solid dispersion

More Information
  • In this study, the effect of pH regulator meglumine(MEG)on the dissolution behavior of indomethacin(IND)amorphous solid dispersions was evaluated. The amorphous solid dispersion was prepared by hot-melt extrusion using IND and Kollidon® VA64 at a weight ratio of 1∶4, and extrudates were characterized using differential scanning calorimetry(DSC)and X-ray powder diffraction(PXRD). The dissolution behaviors of solid dispersions with or without MEG were investigated in three kinds of pH media. The effect of infiltration rate of media, microenvironmental pH(pHM)and recrystallization of drugs on drug dissolution were evaluated by designing the appropriate experiments. The results showed that the presence of MEG could accelerate the dissolution of IND from solid dispersions through providing an alkaline microenvironment, but in different dissolution media, the intensity and duration of alkaline microenvironment, recrystallization of local drug molecules and infiltration rate of media showed an obvious difference, and the above factors simultaneously affected the dissolution behavior of drugs from solid dispersions.
  • [1]
    Allesφ M,Chieng N,Rehder S,et al.Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation:amorphous naproxen-cimetidine mixtures prepared by mechanical activation[J].J Control Release,2009,136(1):45-53.
    [2]
    Pore Y,Shinde V,Rao J.Physical stabilization of amorphous itraconazole in solid dispersions for improved dissolution profile[J].J App Pharm Sci,2016:037-044.
    [3]
    Dahan A,Beig A,Ioffe-Dahan V,et al.The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds:increased apparent solubility and drug flux through the intestinal membrane[J].AAPS J,2013,15(2):347-353.
    [4]
    Wan SX,Sun YQ,Qi XX,et al.Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion[J].AAPS PharmSciTech,2012,13(1):159-166.
    [5]
    Shi XJ,Gao J,Liu ZL,et al.Enhanced dissolution of famotidine by cocrystal formation with tartaric acid and maleic acid[J].J China Pharm Univ(中国药科大学学报),2013,44(2):124-126.
    [6]
    Yoshida T,Kurimoto I,Yoshihara K,et al.Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus.I:evaluation of solid dispersion formulations[J].Int J Pharm,2012,428(1/2):18-24.
    [7]
    Chen YL,Liao JB,Liang YZ,et al.Characterization of solid dispersions of Patchouli alcohol with different polymers:effects on the inhibition of reprecipitation and the improvement of dissolution rate[J].Drug Dev Ind Pharm,2015,41(3):436-444.
    [8]
    Dengale SJ,Grohganz H,Rades T,et al.Recent advances in co-amorphous drug formulations[J].Adv Drug Deliv Rev,2016,100:116-125.
    [9]
    Vasconcelos T,Sarmento B,Costa P.Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs[J].Drug Discov Today,2007,12(23/24):1068-1075.
    [10]
    Dhumal RS,Kelly AL,York P,et al.Cocrystalization and simultaneous agglomeration using hot melt extrusion[J].Pharm Res,2010,27(12):2725-2733.
    [11]
    Dierickx L,Van Snick B,Monteyne T,et al.Co-extruded solid solutions as immediate release fixed-dose combinations[J].Eur J Pharm Biopharm,2014,88(2):502-509.
    [12]
    Patel PS,Raval JP,Patel HV.Review on the pharmaceutical applications of hot melt extruder[J].Asian J Pharm Clin Res,2010,3(2):80-83.
    [13]
    Patil H,Tiwari RV,Repka MA.Hot-melt extrusion:from theory to application in pharmaceutical formulation[J].AAPS PharmSciTech,2016,17(1):20-42.
    [14]
    Betageri G.Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques[J].Int J Pharm,1995,126(1/2):155-160.
    [15]
    Chiou WL,Riegelman S.Pharmaceutical applications of solid dispersion systems[J].J Pharm Sci,1971,60(9):1281-1302.
    [16]
    Xia YL,Yuan M,Deng YY,et al.Different effects of silica added internal or external on in vitro dissolution of indomethacin hot-melt extrudates[J].Int J Pharm,2017,534(1/2):272-278.
    [17]
    Srinarong P,Faber JH,Visser MR,et al.Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants[J].Eur J Pharm Biopharm,2009,73(1):154-161.
    [18]
    Yamashita S,Fukunishi A,Higashino H,et al.Design of supersaturable formulation of telmisartan with pH modifier:in vitro study on dissolution and precipitation[J].J Pharm Invest,2017,47(2):163-171.http://dx.doi.org/10.1007/s40005-017-0310-3.
    [19]
    Tran PH,Tran HT,Lee BJ.Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release[J].J Control Release,2008,129(1):59-65.
    [20]
    Bi MD,Kyad A,Kiang YH,et al.Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation[J].AAPS PharmSciTech,2011,12(4):1157-1162.
    [21]
    Doherty C,York P.Microenvironmental pH control of drug dissolution[J].Int J Pharm,1989,50(3):223-232.
  • Related Articles

    [1]WANG Jiang, ZHAO Xueyan, FANG Weirong. Research progress in STAT3/Th17 cells and Sjögren syndrome[J]. Journal of China Pharmaceutical University, 2024, 55(3): 420-428. DOI: 10.11665/j.issn.1000-5048.2023041805
    [2]SHI Xiaoni, YANG Shaoqi, CHENG Yusi, CHAO Jie. PPP2R3A promotes silicosis by regulating the expression of p53[J]. Journal of China Pharmaceutical University, 2022, 53(4): 490-497. DOI: 10.11665/j.issn.1000-5048.20220412
    [3]LIU Li, ZHANG Qianwen, NONG Cheng, ZHANG Xi, XU Xiaoting, Mohammed Ismail, XIAO Li, JIANG Zhenzhou, ZHANG Luyong, SUN Lixin. Research progress of lncRNA regulating signal transduction pathway in liver diseases[J]. Journal of China Pharmaceutical University, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304
    [4]WAN Nanyan, JIANG Cuihua, GAO Meng, ZHANG Jian, YIN Zhiqi, PAN Ke. Paeoniflorin inhibits programmed cell death-1-ligand 1 expression in HepG2 cells by regulating JAK/STAT3 signal pathway[J]. Journal of China Pharmaceutical University, 2019, 50(2): 213-221. DOI: 10.11665/j.issn.1000-5048.20190213
    [5]QIAO Jianan, WANG Tingfang, ZHANG Can. Design, synthesis and bioactivities of 4-(3-sulfonylbenzene)amino-6-formylpyrrole[2, 3-d] pyrimidine derivatives[J]. Journal of China Pharmaceutical University, 2017, 48(5): 554-562. DOI: 10.11665/j.issn.1000-5048.20170508
    [6]TAN Chengning, HUANG Jinghan, LI Chunhong, XIA Zhining, YANG Fengqing. Applications of proteomics in the study of cell signal pathways[J]. Journal of China Pharmaceutical University, 2017, 48(4): 384-395. DOI: 10.11665/j.issn.1000-5048.20170402
    [7]LIU Xiaofei, WANG Tingfang, JU Caoyun, ZHANG Can. Synthesis and JAK2 inhibitory activities of 4-phenyl-pyrrolo[2, 3-d]pyrimidine derivatives[J]. Journal of China Pharmaceutical University, 2017, 48(2): 150-156. DOI: 10.11665/j.issn.1000-5048.20170204
    [8]WANG Jing-song, SHEN Jing, ZHANG Ting, TANG Cong, REN Tian-nian, XI Tao. Ursolic acid downregulates COX-2 expression by suppressing the activation of ERK in A549 cells[J]. Journal of China Pharmaceutical University, 2011, 42(1): 68-72.
    [9]Changes of Expression and Functions of Dipeptide Transporter after Anoxia/reoxygenation in Caco-2 Cells[J]. Journal of China Pharmaceutical University, 2003, (1): 76-79.
    [10]Effects of 3 Tyrphostins on Recombinant Human Protein Kinase CK2 Holoenzyme[J]. Journal of China Pharmaceutical University, 2001, (6): 51-56.
  • Cited by

    Periodical cited type(6)

    1. 朱秋梦,石佳琦,吕玮,张昕,肖云峰. 丁香酚对大鼠心肌缺血再灌注损伤的抑制作用及其机制. 山东医药. 2024(05): 7-11 .
    2. 张艺馨,李双. 依托咪酯调控circ-CCND1/miR-214-5p分子轴减轻缺氧/复氧诱导的心肌细胞损伤. 中国药师. 2022(01): 6-11 .
    3. 徐季轩,马晓静,陈泓颖,高小力,佟海英,屠鹏飞,安超,柴兴云. 我国主要少数民族医药防治缺血性心脏病研究概述. 中国实验方剂学杂志. 2022(17): 235-247 .
    4. 赵汴霞,宛蕾. 人参皂苷Rd对人脐静脉内皮细胞凋亡保护的作用研究. 河南医学高等专科学校学报. 2022(04): 399-405 .
    5. 劳慧敏,李燕宁,韩成恩,陈梦琦. 养心活血解毒方对CVB3诱导的病毒性心肌炎小鼠心肌损伤的保护作用. 时珍国医国药. 2021(03): 544-547 .
    6. 张文超,方秧青,钟静红,张明. 粉防己碱通过JAK2-STAT3途径减轻心肌缺血/再灌注损伤. 解剖学杂志. 2021(04): 291-294+318 .

    Other cited types(2)

Catalog

    Article views (396) PDF downloads (633) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return