• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CAO Jie, ZHU Zhiling, YUAN Meng, KE Xue. Effect and evaluation of microenvironment pH on dissolution behavior of indomethacin solid dispersion[J]. Journal of China Pharmaceutical University, 2019, 50(6): 686-693. DOI: 10.11665/j.issn.1000-5048.20190608
Citation: CAO Jie, ZHU Zhiling, YUAN Meng, KE Xue. Effect and evaluation of microenvironment pH on dissolution behavior of indomethacin solid dispersion[J]. Journal of China Pharmaceutical University, 2019, 50(6): 686-693. DOI: 10.11665/j.issn.1000-5048.20190608

Effect and evaluation of microenvironment pH on dissolution behavior of indomethacin solid dispersion

More Information
  • In this study, the effect of pH regulator meglumine(MEG)on the dissolution behavior of indomethacin(IND)amorphous solid dispersions was evaluated. The amorphous solid dispersion was prepared by hot-melt extrusion using IND and Kollidon® VA64 at a weight ratio of 1∶4, and extrudates were characterized using differential scanning calorimetry(DSC)and X-ray powder diffraction(PXRD). The dissolution behaviors of solid dispersions with or without MEG were investigated in three kinds of pH media. The effect of infiltration rate of media, microenvironmental pH(pHM)and recrystallization of drugs on drug dissolution were evaluated by designing the appropriate experiments. The results showed that the presence of MEG could accelerate the dissolution of IND from solid dispersions through providing an alkaline microenvironment, but in different dissolution media, the intensity and duration of alkaline microenvironment, recrystallization of local drug molecules and infiltration rate of media showed an obvious difference, and the above factors simultaneously affected the dissolution behavior of drugs from solid dispersions.
  • [1]
    Allesφ M,Chieng N,Rehder S,et al.Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation:amorphous naproxen-cimetidine mixtures prepared by mechanical activation[J].J Control Release,2009,136(1):45-53.
    [2]
    Pore Y,Shinde V,Rao J.Physical stabilization of amorphous itraconazole in solid dispersions for improved dissolution profile[J].J App Pharm Sci,2016:037-044.
    [3]
    Dahan A,Beig A,Ioffe-Dahan V,et al.The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds:increased apparent solubility and drug flux through the intestinal membrane[J].AAPS J,2013,15(2):347-353.
    [4]
    Wan SX,Sun YQ,Qi XX,et al.Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion[J].AAPS PharmSciTech,2012,13(1):159-166.
    [5]
    Shi XJ,Gao J,Liu ZL,et al.Enhanced dissolution of famotidine by cocrystal formation with tartaric acid and maleic acid[J].J China Pharm Univ(中国药科大学学报),2013,44(2):124-126.
    [6]
    Yoshida T,Kurimoto I,Yoshihara K,et al.Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus.I:evaluation of solid dispersion formulations[J].Int J Pharm,2012,428(1/2):18-24.
    [7]
    Chen YL,Liao JB,Liang YZ,et al.Characterization of solid dispersions of Patchouli alcohol with different polymers:effects on the inhibition of reprecipitation and the improvement of dissolution rate[J].Drug Dev Ind Pharm,2015,41(3):436-444.
    [8]
    Dengale SJ,Grohganz H,Rades T,et al.Recent advances in co-amorphous drug formulations[J].Adv Drug Deliv Rev,2016,100:116-125.
    [9]
    Vasconcelos T,Sarmento B,Costa P.Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs[J].Drug Discov Today,2007,12(23/24):1068-1075.
    [10]
    Dhumal RS,Kelly AL,York P,et al.Cocrystalization and simultaneous agglomeration using hot melt extrusion[J].Pharm Res,2010,27(12):2725-2733.
    [11]
    Dierickx L,Van Snick B,Monteyne T,et al.Co-extruded solid solutions as immediate release fixed-dose combinations[J].Eur J Pharm Biopharm,2014,88(2):502-509.
    [12]
    Patel PS,Raval JP,Patel HV.Review on the pharmaceutical applications of hot melt extruder[J].Asian J Pharm Clin Res,2010,3(2):80-83.
    [13]
    Patil H,Tiwari RV,Repka MA.Hot-melt extrusion:from theory to application in pharmaceutical formulation[J].AAPS PharmSciTech,2016,17(1):20-42.
    [14]
    Betageri G.Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques[J].Int J Pharm,1995,126(1/2):155-160.
    [15]
    Chiou WL,Riegelman S.Pharmaceutical applications of solid dispersion systems[J].J Pharm Sci,1971,60(9):1281-1302.
    [16]
    Xia YL,Yuan M,Deng YY,et al.Different effects of silica added internal or external on in vitro dissolution of indomethacin hot-melt extrudates[J].Int J Pharm,2017,534(1/2):272-278.
    [17]
    Srinarong P,Faber JH,Visser MR,et al.Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants[J].Eur J Pharm Biopharm,2009,73(1):154-161.
    [18]
    Yamashita S,Fukunishi A,Higashino H,et al.Design of supersaturable formulation of telmisartan with pH modifier:in vitro study on dissolution and precipitation[J].J Pharm Invest,2017,47(2):163-171.http://dx.doi.org/10.1007/s40005-017-0310-3.
    [19]
    Tran PH,Tran HT,Lee BJ.Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release[J].J Control Release,2008,129(1):59-65.
    [20]
    Bi MD,Kyad A,Kiang YH,et al.Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation[J].AAPS PharmSciTech,2011,12(4):1157-1162.
    [21]
    Doherty C,York P.Microenvironmental pH control of drug dissolution[J].Int J Pharm,1989,50(3):223-232.
  • Related Articles

    [1]DING Tiantian, SU Meiling, QIAN Shuai, ZHANG Jianjun, GAO Yuan, WEI Yuanfeng. Progress of research on quantitative techniques for trace amount of crystals in solid state drugs[J]. Journal of China Pharmaceutical University, 2024, 55(2): 181-193. DOI: 10.11665/j.issn.1000-5048.2023081404
    [2]LI Ting, ZHANG Ke, LI Jun, WANG Shengpeng, SONG Yuelin. An emerging analytical tool for highly sensitive quantitative analysis based on liquid chromatography-multiple-reaction monitoring cubed (MRM3)[J]. Journal of China Pharmaceutical University, 2023, 54(6): 718-728. DOI: 10.11665/j.issn.1000-5048.2023062801
    [3]CAO Guoxiu, LU Wenjie, YE Hui, TIAN Yang, HAO Haiping. Rapid identification of constituents from different Ginkgo biloba preparations by high resolution mass spectrometry and metabolomics technology[J]. Journal of China Pharmaceutical University, 2018, 49(4): 441-448. DOI: 10.11665/j.issn.1000-5048.20180409
    [4]YU Xiaxia, LI Shaoyuan, HUA Yunfei, LYU Yiwei, ZHANG Mohan, HUANG Yin. Metabolic profiling of the nephrotoxicity of realgar nanoparticles in rats[J]. Journal of China Pharmaceutical University, 2017, 48(3): 328-333. DOI: 10.11665/j.issn.1000-5048.20170313
    [5]ZHANG Lu-yang, TIAN Yuan, SHEN Xiao-hang, LUO Jiang, ZHANG Zun-jian. Hydrophilic interaction chromatography and its application in quantitative bioanalysis[J]. Journal of China Pharmaceutical University, 2012, 43(4): 379-384.
    [6]Common issues and counterplans on LC-MS analysis of peptides and proteins in bio-samples[J]. Journal of China Pharmaceutical University, 2010, 41(5): 401-407.
    [7]A new sandwich ELISA method for quantitative analysis of fusion protein IL-2-HSA[J]. Journal of China Pharmaceutical University, 2010, 41(2): 175-179.
    [8]Application of internal standard correction method in the simultaneous determination of multi-components of Fructus Gardeniae[J]. Journal of China Pharmaceutical University, 2010, 41(1): 50-54.
    [9]TIAN Ya-nan, YANG Jie, LIU Yan-na, WANG Qiang. Quality analysis of 3 species of Radix Paeoniae Alba cultivated in Bozhou by HPLC and LC-MS[J]. Journal of China Pharmaceutical University, 2009, 40(3): 227-231.
    [10]Application of Derivative Chromatography Method in Identification of Chromatographic Peak Purity and Quantitive Analysis[J]. Journal of China Pharmaceutical University, 1993, (2): 112-115.
  • Cited by

    Periodical cited type(3)

    1. 马会芳,陈丽,潘晓威,刘丽丽,潘政,叶剑芝. 复杂生物样本体系中甘油磷脂定量分析方法研究进展. 现代农业科技. 2025(10): 117-123+136 .
    2. 任可乐,孟祥龙,祁晓鸣,刘晓琴,苏晓娟,王佩义,张朔生. 基于“肾脑相关”的龟龄集对阿尔茨海默病模型大鼠的作用及其机制研究. 现代药物与临床. 2022(01): 1-10 .
    3. 葛嘉雨,梁海燕,刘冬,李春灵,张丰泉,赵茜. 柱前衍生-SPE-GC/MS法测定水中痕量溴代苯酚. 河北大学学报(自然科学版). 2022(04): 395-402 .

    Other cited types(6)

Catalog

    Article views (411) PDF downloads (636) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return