Citation: | DING Tiantian, SU Meiling, QIAN Shuai, et al. Progress of research on quantitative techniques for trace amount of crystals in solid state drugs[J]. J China Pharm Univ, 2024, 55(2): 181 − 193. DOI: 10.11665/j.issn.1000-5048.2023081404 |
It is well-known that crystal form of a drug is a key factor impacting the physicochemical properties of the drug, which in turn affects its in vivo efficacy, safety and stability. The study on crystal forms of solid-state drugs is crucial for drug quality control, selection of production process and evaluation of clinical efficacy. The combination of chemometric and analytical techniques exhibited its great ability to analyze a large amount of multidimensional data, providing the possibility for quantification of trace amount of crystals (< 1%). Meanwhile, using the process analytical technology (PAT) to monitor the crystal content real-time during prescription preparation process can further realize the control on formulation quality and serve as a core technology to support the patent protection of crystalline forms. In this review, the combined application of crystal analytical techniques and chemometric methods for the quantitative analysis of trace crystals were summarized, aiming to provide guidance for the manufacturing of pharmaceutical preparations and their quality control.
[1] |
Qin S, Li F, Yeh S, et al. Physical stability of amorphous pharmaceutical solids: nucleation, crystal growth, phase separation and effects of the polymers[J]. Int J Pharm, 2020, 590: 119925. doi: 10.1016/j.ijpharm.2020.119925
|
[2] |
Bauer J, Spanton S, Henry R, et al. Ritonavir: an extraordinary example of conformational polymorphism[J]. Pharm Res, 2001, 18(6): 859-866. doi: 10.1023/A:1011052932607
|
[3] |
Liu MD, Shi P, Wang GL, et al. Quantitative analysis of binary mixtures of entecavir using solid-state analytical techniques with chemometric methods[J]. Arab J Chem, 2021, 14(10): 103360. doi: 10.1016/j.arabjc.2021.103360
|
[4] |
Li ZD, Zhang K, Zhang ZF, et al. Infrared spectral band screening based on partial least squares is used for the quantitative analysis of mannitol-calcium chloride cocrystal[J]. Acta Pharm Sin (药学学报), 2023, 58(4): 1041-1048.
|
[5] |
Antonio M, Carneiro RL, Maggio RM. A comparative approach of MIR, NIR and Raman based chemometric strategies for quantification of form I of meloxicam in commercial bulk drug[J]. Microchem J, 2022, 180: 107575. doi: 10.1016/j.microc.2022.107575
|
[6] |
Vivoda M, Roskar R, Kmetec V. The development of a quick method for amorphicity determination by isothermal microcalorimetry[J]. J Therm Anal Calorim, 2011, 105: 1023-1030. doi: 10.1007/s10973-011-1443-7
|
[7] |
S'ari M, Blade H, Cosgrove S, et al. Characterization of amorphous solid dispersions and identification of low levels of crystallinity by transmission electron microscopy[J]. Mol Pharm, 2021, 18(5): 1905-1919. doi: 10.1021/acs.molpharmaceut.0c00918
|
[8] |
Sheokand S, Modi SR, Bansal AK. Quantification of low levels of amorphous content in crystalline celecoxib using dynamic vapor sorption (DVS)[J]. Eur J Pharm Biopharm, 2016, 102: 77-86. doi: 10.1016/j.ejpb.2016.03.006
|
[9] |
Smith CJ, Dinh J, Schmitt PD, et al. Calibration-free second harmonic generation (SHG) image analysis for quantification of trace crystallinity within final dosage forms of amorphous solid dispersions[J]. Appl Spectrosc, 2018, 72(11): 1594-1605. doi: 10.1177/0003702818786506
|
[10] |
Widjaja E, Kanaujia P, Lau G, et al. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis[J]. Eur J Pharm Sci, 2011, 42(1/2): 45-54.
|
[11] |
Sun ZY, Lin BR, Yang XC, et al. Review of the application of Raman spectroscopy in qualitative and quantitative analysis of drug polymorphism[J]. Curr Top Med Chem, 2023, 23(14): 1340-1351. doi: 10.2174/1568026623666221223113342
|
[12] |
Moseson DE, Taylor LS. Crystallinity: a complex critical quality attribute of amorphous solid dispersions[J]. Mol Pharm, 2023, 20(10): 4802-4825. doi: 10.1021/acs.molpharmaceut.3c00526
|
[13] |
Mazivila SJ, Olivieri AC. Chemometrics coupled to vibrational spectroscopy and spectroscopic imaging for the analysis of solid-phase pharmaceutical products: a brief review on non-destructive analytical methods[J]. TrAC, Trends Anal Chem, 2018, 108: 74-87. doi: 10.1016/j.trac.2018.08.013
|
[14] |
Beyer A, Grohganz H, Lobmann K, et al. Multivariate quantification of the solid state phase composition of co-amorphous naproxen-indomethacin[J]. Molecules, 2015, 20(10): 19571-19587. doi: 10.3390/molecules201019571
|
[15] |
Bhavana V, Chavan RB, Mannava MKC, et al. Quantification of niclosamide polymorphic forms—a comparative study by Raman, NIR and MIR using chemometric techniques[J]. Talanta, 2019, 199: 679-688. doi: 10.1016/j.talanta.2019.03.027
|
[16] |
Chen T, Li Q, Liu QW, et al. Application of solid-state nuclear magnetic resonance technology in the research of crystalline drugs[J]. Her Med (医药导报), 2022, 41(5): 655-663.
|
[17] |
Tinmanee R, Larsen SC, Morris KR, et al. Quantification of gabapentin polymorphs in gabapentin/excipient mixtures using solid state 13C NMR spectroscopy and X-ray powder diffraction[J]. J Pharm Biomed Anal. 2017, 146 : 29-36.
|
[18] |
O'Neill MAA, Gaisford S. Application and use of isothermal calorimetry in pharmaceutical development[J]. Int J Pharm, 2011, 417(1/2): 83-93. doi: 10.1016/j.ijpharm.2011.01.038
|
[19] |
Hisada H, Okayama A, Hoshino T et al. Determining the distribution of active pharmaceutical ingredients in combination tablets using near IR and low-frequency Raman spectroscopy imaging[J]. Chem Pharm Bull, 2020, 68(2): 155-160. doi: 10.1248/cpb.c19-00791
|
[20] |
Columbano A, Buckton G, Wikeley P. A study of the crystallisation of amorphous salbutamol sulphate using water vapour sorption and near infrared spectroscopy[J]. Int J Pharm, 2002, 237(1/2): 171-178.
|
[21] |
Kapourani A, Valkanioti V, Kontogiannopoulos KN, et al. Determination of the physical state of a drug in amorphous solid dispersions using artificial neural networks and ATR-FTIR spectroscopy[J]. Int J Pharm, 2020, 2: 100064.
|
[22] |
Grisedale LC, Moffat JG, Jamieson MJ, et al. Development of photothermal FTIR microspectroscopy as a novel means of spatially identifying amorphous and crystalline salbutamol sulfate on composite surfaces[J]. Mol Pharm, 2013, 10(5): 1815-1823. doi: 10.1021/mp300605s
|
[23] |
Hamed R, Mohamed EM, Rahman Z, et al. 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models[J]. Int J Pharm, 2021, 592: 120059. doi: 10.1016/j.ijpharm.2020.120059
|
[24] |
Rahman Z, Siddiqui A, Bykadi S, et al. Near-infrared and Fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion[J]. J Pharm Sci, 2014, 103(8): 2376-2385. doi: 10.1002/jps.24055
|
[25] |
Barmpalexis P, Karagianni A, Nikolakakis I, et al. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy[J]. J Pharm Biomed Anal, 2018, 158: 214-224. doi: 10.1016/j.jpba.2018.06.004
|
[26] |
Ali SFB, Rahman Z, Dharani S, et al. Chemometric models for quantification of carbamazepine anhydrous and dihydrate forms in the formulation[J]. J Pharm Sci, 2019, 108(3): 1211-1219. doi: 10.1016/j.xphs.2018.10.023
|
[27] |
Du Y, Xue JD. Investigation of polymorphism and cocrystallization of active pharmaceutical ingredients using vibrational spectroscopic techniques[J]. Curr Pharm Des, 2016, 22(32): 4917-4928. doi: 10.2174/1381612822666160726104604
|
[28] |
Huang R, Ye XX, Lu D, et al. Analysis of the polymorphism of furosemide by Raman spectroscopy and establishment of the quantitative model[J]. Chin Pharm J (中国药学杂志), 2018, 53(24): 2127-2131.
|
[29] |
Calvo NL, Balzaretti NM, Antonio M, et al. Chemometrics-assisted study of the interconversion between the crystalline forms of nimodipine[J]. J Pharm Biomed Anal, 2018, 158: 461-470. doi: 10.1016/j.jpba.2018.06.019
|
[30] |
Kachrimanis K, Braun DE, Griesser UJ. Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression[J]. J Pharm Biomed Anal, 2007, 43(2): 407-412. doi: 10.1016/j.jpba.2006.07.032
|
[31] |
Croker DM, Hennigan MC, Maher A, et al. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam[J]. J Pharm Biomed Anal, 2012, 63: 80-86. doi: 10.1016/j.jpba.2012.01.013
|
[32] |
Zhong L, Gao LL, Li L, et al. Trends-process analytical technology in solid oral dosage manufacturing[J]. Eur J Pharm Biopharm, 2020, 153: 187-199. doi: 10.1016/j.ejpb.2020.06.008
|
[33] |
Heinz A, Gordon KC, McGoverin CM, et al. Understanding the solid-state forms of fenofibrate-a spectroscopic and computational study[J]. Eur J Pharm Biopharm, 2009, 71(1): 100-108. doi: 10.1016/j.ejpb.2008.05.030
|
[34] |
Otsuka Y, Ito A, Matsumura S, et al. Effect of hydroxypropyl cellulose and hydroxypropylmethyl cellulose on carbamazepine polymorphic transformation; attenuated total reflectance-infrared spectroscopy and chemoinformatics analysis[J]. Colloid Polym Sci, 2015, 293(12): 3471-3478. doi: 10.1007/s00396-015-3698-1
|
[35] |
Calvo NL, Maggio RM, Kaufman TS. A dynamic thermal ATR-FTIR/chemometric approach to the analysis of polymorphic interconversions. Cimetidine as a model drug[J]. J Pharm Biomed Anal, 2014, 92: 90-97. doi: 10.1016/j.jpba.2013.12.036
|
[36] |
Savolainen M, Kogermann K, Heinz A, et al. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy[J]. Eur J Pharm Biopharm, 2009, 71(1): 71-79. doi: 10.1016/j.ejpb.2008.06.001
|
[37] |
Surwase SA, Boetker JP, Saville D, et al. Indomethacin: new polymorphs of an old drug[J]. Mol Pharm, 2013, 10(12): 4472-4480. doi: 10.1021/mp400299a
|
[38] |
Jorgensen AC, Miroshnyk I, Karjalainen M, et al. Multivariate data analysis as a fast tool in evaluation of solid state phenomena[J]. J Pharm Sci, 2006, 95(4): 906-916. doi: 10.1002/jps.20573
|
[39] |
Chieng N, Rades T, Saville D. Formation and physical stability of the amorphous phase of ranitidine hydrochloride polymorphs prepared by cryo-milling[J]. Eur J Pharm Biopharm, 2008, 68(3): 771-780. doi: 10.1016/j.ejpb.2007.09.001
|
[40] |
Otsuka M, Kanai Y, Hattori Y. Real-time monitoring of changes of adsorbed and crystalline water contents in tablet formulation powder containing theophylline anhydrate at various temperatures during agitated granulation by near-infrared spectroscopy[J]. J Pharm Sci, 2014, 103(9): 2924-2936. doi: 10.1002/jps.24006
|
[41] |
Hamed R, Mohamed EM, Sediri K, et al. Development of stable amorphous solid dispersion and quantification of crystalline fraction of lopinavir by spectroscopic-chemometric methods[J]. Int J Pharm, 2021, 602: 120657. doi: 10.1016/j.ijpharm.2021.120657
|
[42] |
Netchacovitch L, Dumont E, Cailletaud J, et al. Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by hot-melt extrusion using transmission Raman spectroscopy: a feasibility study[J]. Int J Pharm, 2017, 530(1/2): 249-255.
|
[43] |
Saerens L, Dierickx L, Lenain B, et al. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process[J]. Eur J Pharm Biopharm, 2011, 77(1): 158-163. doi: 10.1016/j.ejpb.2010.09.015
|
[44] |
Wabuyele BW, Sotthivirat S, Zhou GX, et al. Dispersive Raman spectroscopy for quantifying amorphous drug content in intact tablets[J]. J Pharm Sci, 2017, 106(2): 579-588. doi: 10.1016/j.xphs.2016.10.014
|
[45] |
Lust A, Strachan CJ, Veski P, et al. Amorphous solid dispersions of piroxicam and Soluplus®: qualitative and quantitative analysis of piroxicam recrystallization during storage[J]. Int J Pharm, 2015, 486(1/2): 306-314.
|
[46] |
Otsuka Y, Utsunomiya Y, Umeda D, et al. Effect of polymers and storage relative humidity on amorphous rebamipide and its solid dispersion transformation: multiple spectra chemometrics of powder X-ray diffraction and near-infrared spectroscopy[J]. Pharmaceuticals, 2020, 13(7): 147. doi: 10.3390/ph13070147
|
[47] |
Rahman Z, Bykadi S, Siddiqui A, et al. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method[J]. J Pharm Sci, 2015, 104(5): 1777-1786. doi: 10.1002/jps.24400
|
[48] |
Bolla G, Sarma B, Nangia AK. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs[J]. Chem Rev, 2022, 122(13): 11514-11603. doi: 10.1021/acs.chemrev.1c00987
|
[49] |
Karimi-Jafari M, Soto R, Albadarin AB, et al. In-line Raman spectroscopy and chemometrics for monitoring cocrystallisation using hot melt extrusion[J]. Int J Pharm, 2021, 601: 120555. doi: 10.1016/j.ijpharm.2021.120555
|
[50] |
Costa NF, Fernandes AI, Pinto JF. Measurement of the amorphous fraction of olanzapine incorporated in a co-amorphous formulation[J]. Int J Pharm, 2020, 588: 119716. doi: 10.1016/j.ijpharm.2020.119716
|
[51] |
Inoue M, Osada T, Hisada H, et al. Solid-state quantification of cocrystals in pharmaceutical tablets using transmission low-frequency Raman spectroscopy[J]. Anal Chem, 2019, 91(21): 13427-13432. doi: 10.1021/acs.analchem.9b01895
|
[52] |
Soares FLF, Carneiro RL. In-line monitoring of cocrystallization process and quantification of carbamazepine-nicotinamide cocrystal using Raman spectroscopy and chemometric tools[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2017, 180: 1-8. doi: 10.1016/j.saa.2017.02.045
|
[53] |
Koide T, Takeuchi Y, Otaki T, et al. Quantification of a cocrystal and its dissociated compounds in solid dosage form using transmission Raman spectroscopy[J]. J Pharm Biomed Anal, 2020, 177: 112886. doi: 10.1016/j.jpba.2019.112886
|
[54] |
Jensen KT, Larsen FH, Cornett C, et al. Formation mechanism of coamorphous drug-amino acid mixtures[J]. Mol Pharm, 2015, 12(7): 2484-2492. doi: 10.1021/acs.molpharmaceut.5b00295
|
[55] |
Liu MD, Liu JC, Wang QH, et al. Quantitative analysis of low content polymorphic impurities in canagliflozin tablets by PXRD, NIR, ATR-FITR and Raman solid-state analysis techniques combined with stoichiometry[J]. Spectrochim Acta A, 2023, 293: 122458. doi: 10.1016/j.saa.2023.122458
|
[56] |
Otsuka M, Fukui Y. Determination of carbamazepine polymorphic contents in double-layered tablets using transmittance- and reflectance-near-infrared spectroscopy involving chemometrics[J]. Drug Dev Ind Pharm, 2010, 36(12): 1404-1412. doi: 10.3109/03639045.2010.487262
|
[57] |
Mah PT, Fraser SJ, Reish ME, et al. Use of low-frequency Raman spectroscopy and chemometrics for the quantification of crystallinity in amorphous griseofulvin tablets[J]. Vib Spectrosc, 2015, 77: 10-16. doi: 10.1016/j.vibspec.2015.02.002
|
[58] |
Okumura T, Ostuka M. Evaluation of the microcrystallinity of a drug substance, indomethacin, in a pharmaceutical model tablet by chemometric FT-Raman spectroscopy[J]. Pharm Res, 2005, 22(8): 1350-1357. doi: 10.1007/s11095-005-5281-9
|
[59] |
Pan DH, Crull G, Yin S, et al. Low level drug product API form analysis - avalide tablet NIR quantitative method development and robustness challenges[J]. J Pharm Biomed Anal, 2014, 89: 268-275. doi: 10.1016/j.jpba.2013.11.011
|
[60] |
Domingos RC, Pinheiro AF, de Alvarenga BR, et al. Simultaneous quantification of amorphous and crystalline valsartan in tablets using Raman spectroscopy and chemometrics tools[J]. J Braz Chem Soc, 2022, 33(2): 157-162.
|
[1] | PEI Xin, LI Guideng, CHU Weihua. Progress of proximity labeling technology in membrane protein interaction[J]. Journal of China Pharmaceutical University, 2024, 55(2): 158-166. DOI: 10.11665/j.issn.1000-5048.2023041303 |
[2] | ZHENG Yuting, HONG Tao, XU Kehui, WEN Minghao, YANG Jixue, WU Mengying, HANG Taijun, SONG Min. In vitro release of paclitaxel derivative liposome by paddle membrane binding assay[J]. Journal of China Pharmaceutical University, 2023, 54(6): 743-748. DOI: 10.11665/j.issn.1000-5048.2023041803 |
[3] | XU Jianpei, XU Qunwei, WANG Xiaoqi, XIN Hongliang. Advances in biomimetic drug delivery systems based on platelet and platelet membrane[J]. Journal of China Pharmaceutical University, 2018, 49(6): 653-659. DOI: 10.11665/j.issn.1000-5048.20180603 |
[4] | JI Yibing, DUAN Feifei, HAO Dandan, CHEN Jianqiu. Preparation and application of novel polysulfone chiral membranes for the separation of tryptophan enantiomers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108 |
[5] | WU Zheng, ZHENG Feng, DING Li. Development of in-vitro evaluation methods to access membrane permeability of drugs[J]. Journal of China Pharmaceutical University, 2011, 42(1): 16-21. |
[6] | Construction of a Novel Fusion Expression Vector[J]. Journal of China Pharmaceutical University, 2000, (2): 65-69. |
[7] | Preparation of Immobilized Antibody Membrane of Acoustic Immunosensor for Determination of Insulin[J]. Journal of China Pharmaceutical University, 1997, (1): 52-55. |
[8] | Study of the Effect of Ligustrazine on Mouse Erythrocyte Membranes[J]. Journal of China Pharmaceutical University, 1994, (3): 166-169. |
[9] | Studies on the Membrane Controlled Release Metoprolol Tablet[J]. Journal of China Pharmaceutical University, 1991, (6): 341-344. |
[10] | PREPARATION AND APPLICATION OF NEOSTIGMINE METHYLSULFATE PVC MEMBRANE SELECTIVE ELECTRODE[J]. Journal of China Pharmaceutical University, 1988, (1): 58-61. |