Citation: | MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301 |
[1] |
. Annu Rev Immunol, 2014, 32(1): 461-488.
|
[2] |
Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation[J]. Science, 2019, 363(6431): eaat8657.
|
[3] |
Civril F, Deimling T, De CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS[J]. Nature, 2013, 498(7454): 332-337.
|
[4] |
Zhang X, Wu J, Du F, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop[J]. Cell Rep, 2014, 6(3): 421-430.
|
[5] |
Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders[J]. Nature, 2017, 549(7672): 394-398.
|
[6] |
Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING[J]. Nature, 2013, 498(7454): 380–384.
|
[7] |
Shang G, Zhu D, Li N, et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP[J]. Nat Struct Mol Biol, 2012, 19(7): 725-727.
|
[8] |
Zhao B, Du F, Xu P, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1[J]. Nature, 2019, 569(7758): 718-722.
|
[9] |
Zhao B, Shu C, Gao X, et al. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins[J]. Proc Natl Acad Sci, 2016, 113(24): E3403-E3412.
|
[10] |
Burdette DL, Monroe KM, Sotelo TK, et al. STING is a direct innate immune sensor of cyclic di-GMP[J]. Nature, 2011, 478(7370): 515-518.
|
[11] |
Su J, Rui Y, Lou M, et al. HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS-STING-mediated NF-κB signalling[J]. Nat Microbiol, 2019, 4(12): 2552-2564.
|
[12] |
Aguirre S, Luthra P, Sanchez MT, et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection[J]. Nat Microbiol, 2017, 2(5): 17037.
|
[13] |
Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842.
|
[14] |
Konno H, Yamauchi S, Berglund A, et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production[J]. Oncogene, 2018, 37(15): 2037–2051.
|
[15] |
Wu S, Zhang Q, Zhang F, et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity[J]. Nat Cell Biol, 2019, 21(8): 1027-1040.
|
[16] |
Elinav E, Nowarski R, Thaiss CA, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms[J]. Nat Rev Cancer, 2013, 13(11): 759-771.
|
[17] |
Ahn J, Xia T, Konno H, et al. Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5(1): 5166.
|
[18] |
Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604): 493-498.
|
[19] |
Gao D, Li T, Li XD, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases[J]. Proc Natl Acad Sci, 2015, 112(42): E5699-E5705.
|
[20] |
Crow YJ, Chase DS, Lowenstein SJ, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1[J]. Am J Med Genet Part A, 2015, 167(2): 296-312.
|
[21] |
Coquel F, Silva MJ, Técher H, et al. SAMHD1 acts at stalled replication forks to prevent interferon induction[J]. Nature, 2018, 557(7703): 57-61.
|
[22] |
Crow YJ, Manel N. Aicardi–Goutières syndrome and the type I interferonopathies[J]. Nat Rev Immunol, 2015, 15(7): 429-440.
|
[23] |
Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome[J]. N Engl J Med, 2014, 371(6): 507-518.
|
[24] |
Zhao Q, Wei Y, Pandol SJ, et al. STING signaling promotes inflammation in experimental acute pancreatitis[J]. Gastroenterology, 2018, 154(6): 1822-1835.
|
[25] |
Rodero MP, Tesser A, Bartok E, et al. Type I interferon-mediated autoinflammation due to DNase II deficiency[J]. Nat Commun, 2017, 8(1): 2176.
|
[26] |
Sliter DA, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation[J]. Nature, 2018, 561(7722): 258-262.
|
[27] |
Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472.
|
[28] |
An J, Durcan L, Karr RM, et al. Expression of cyclic GMP‐AMP synthase in patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2017, 69(4): 800-807.
|
[29] |
Ahn J, Gutman D, Saijo S, et al. STING manifests self DNA-dependent inflammatory disease[J]. Proc Natl Acad Sci, 2012, 109(47): 19386-19391.
|
[30] |
Kerur N, Fukuda S, Banerjee D, et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration[J]. Nat Med, 2018, 24(1): 50–61.
|
[31] |
Petrasek J, Iracheta VA, Csak T, et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease[J]. Proc Natl Acad Sci, 2013, 110(41): 16544–16549.
|
[32] |
Iracheta VA, Petrasek J, Gyongyosi B, et al. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes[J]. J Biol Chem, 2016, 291(52): 26794–26805.
|
[33] |
King KR, Aguirre AD, Ye YX, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction[J]. Nat Med, 2017, 23(12): 1481–1487.
|
[34] |
Yu Y, Liu Y, An W, et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J. Clin Invest, 2018, 129(2): 546–555.
|
[35] |
Zeng L, Kang R, Zhu S, et al. ALK is a therapeutic target for lethal sepsis[J]. Sci Transl Med, 2017, 9(412): eaan5689.
|
[36] |
Marichal T, Ohata K, Bedoret D, et al. DNA released from dying host cells mediates aluminum adjuvant activity[J]. Nat Med, 2011, 17(8): 996–1002.
|
[37] |
Carroll EC, Jin L, Mori A, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons[J]. Immunity, 2016, 44(3): 597-608.
|
[38] |
Wang C, Guan Y, Lv M, et al. Manganese increases the sensitivity of the cGAS-STING Pathway for double-stranded DNA and is required for the host defense against DNA viruses[J]. Immunity, 2018, 48(4): 675-687.
|
[39] |
Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 1-12.
|
[40] |
Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261.
|
[41] |
Hall J, Brault A, Vincent F, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9):
|
[42] |
An J, Woodward JJ, Sasaki T, et al. Cutting Edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction[J]. J Immunol, 2015, 194(9): 4089-4093.
|
[43] |
An J, Woodward JJ, Lai W, et al. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in Trex1-deficient mice[J]. Arthritis Rheumatol, 2018, 70(11): 1807-1819.
|
[44] |
Liu ZS, Cai H, Xue W, et al. G3BP1 promotes DNA binding and activation of cGAS[J]. Nat Immunol, 2019, 20(1): 18-28.
|
[45] |
Dai J, Huang YJ, He X, et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity[J]. Cell, 2019, 176(6): 1447-1460.
|
[46] |
Zhang X, Shi H, Wu J, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING[J]. Mol Cell, 2013, 51(2): 226-235.
|
[47] |
Nakamura T, Miyabe H, Hyodo M, et al. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma[J]. J Control Release, 2015, 216: 149-157.
|
[48] |
Smith TT, Moffett HF, Stephan SB, et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors[J]. J Clin Invest, 2017, 127(6): 2176-2191.
|
[49] |
Ji LY, Hao J, Wang GC, et al. Recent research advances in STING agonists for cancer immunotherapy [J]. J China Pharm Univ(中国药科大学学报), 2020, 51(1): 1-9.
|
[50] |
Banerjee M, Middya S, Basu S, et al. Abstract B43: novel small-molecule human STING agonists generate robust type I interferon responses in tumors[C]. Tumor Microenvironment: American Association for Cancer Research, 2018: B43-B43.
|
[51] |
Ramanjulu JM, Pesiridis GS, Yang J, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity[J]. Nature, 2018, 564(7736): 439-443.
|
[52] |
Cheng N, Watkins SR, Junkins RD, et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer[J]. JCI Insight, 2018, 3(22):
|
[53] |
Siu T, Altman MD, Baltus GA, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING[J]. ACS Med Chem Lett, 2019, 10(1): 92-97.
|
[54] |
Li S, Hong Z, Wang Z, et al. The cyclopeptide Astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421.
|
[55] |
Mukai K, Konno H, Akiba T, et al. Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7(1): 11932.
|
[56] |
Hansen L, Buchan GJ, Rühl M, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling[J]. Proc Natl Acad Sci, 2018, 115(33): E7768-E7775.
|
[57] |
Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273.
|
[58] |
Gulen MF, Koch U, Haag SM, et al. Signalling strength determines proapoptotic functions of STING[J]. Nat Commun, 2017, 8(1): 427.
|
[59] |
Liu H, ZhangH, Wu X, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis[J]. Nature, 2018, 563(7729): 131-136.
|
[60] |
Tang CH, Zundell JA, Ranatunga S, et al. Agonist-mediated activation of STING induces apoptosis in malignant B cells[J]. Cancer Res, 2016, 76(8): 2137-2152.
|
[61] |
Yu YH, Xu ZM, Zeng H, et al. Advances in the study of relationship between Caspases and innate immunity [J]. J China Pharm Univ(中国药科大学学报), 2019, 50(5): 622-630.
|
[62] |
Yang RC, Duan FP, Chao JH, et al. Advances of microRNA activity in innate immunity [J]. J China Pharm Univ(中国药科大学学报), 2017, 48(4): 396-406.
|
[1] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[2] | LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601 |
[3] | BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403 |
[4] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[5] | TIAN Jiping, ZHANG Jian, ZHOU Jinpei, ZHANG Huibin. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. Journal of China Pharmaceutical University, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101 |
[6] | LIU Kejun, ZHANG Zhimin, RAN Ting, CHEN Hongli, LU Tao, CHEN Yadong. Advances in BET bromodomain protein inhibitors[J]. Journal of China Pharmaceutical University, 2015, 46(3): 264-271. DOI: 10.11665/j.issn.1000-5048.20150302 |
[7] | ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102 |
[8] | LI Chunhong, DU Hongjin, WEN Xiao′an, SUN Hongbin. Advances in inhibitors of MDM2 and MDM4[J]. Journal of China Pharmaceutical University, 2015, 46(1): 1-15. DOI: 10.11665/j.issn.1000-5048.20150101 |
[9] | DENG Lian-bai, LI Ai-xiu, JIN Yu-rui. Advances in the study on inhibitors of RNase H,a novel anti-HIV drug target[J]. Journal of China Pharmaceutical University, 2011, 42(6): 578-584. |
[10] | KONG Kai-lai, LU Shuai, GAO Yi-ping, YANG Pei, TANG Wei-fang, LU Tao. Advances on the study of PLK1 inhibitors as antitumor agents[J]. Journal of China Pharmaceutical University, 2011, 42(1): 9-15. |
1. |
郁莉,蒋颖敏,许磊,朱景宇. 分子对接与分子动力学模拟法探究PI3Kδ/度维利塞(Duvelisib)的选择性结合. 化学研究与应用. 2022(02): 341-348 .
![]() | |
2. |
蔡燕飞,陈蕴,史劲松,金坚. 抗肿瘤药物体外药效学评价结合细胞生物学实验教学促进教研融合. 实验室研究与探索. 2020(08): 192-195 .
![]() |