• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406
Citation: FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406

Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis

Funds: This study was supported by the National Natural Science Foundation of China (No.81673381)
More Information
  • Received Date: June 10, 2020
  • Lymphatic metastasis is one of the main routes of tumor metastasis. The limitation of traditional medicine in the treatment of lymphatic tumor metastasis lies in the low concentration of the drug in lymphatic metastases resulting in poor efficacy. Nanocarrier-based drug delivery system plays an important role in enhancing drug targeting, improving drug bioavailability, and reducing side effects. This review introduces the composition and function of the lymphatic system as well as its role in tumor metastasis, enumerates the present therapeutic means and limitations of anti-tumor lymphatic metastasis, and focuses on the recent advances in the passive, active and antigen-presenting cell-mediated lymphatic targeted drug delivery systems in tumor metastasis are highlighted.
  • [1]
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms[J]. Cell,2011,147(2):275-292.
    [2]
    Gupta GP, Massague J. Cancer metastasis: building a framework[J]. Cell,2006,127(4):679-695.
    [3]
    Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites[J]. Nat Rev Cancer,2002,2(8):563-572.
    [4]
    Li MR, Li T, Mo R. Recent progress in targeted drug delivery nanosystems for pancreatic cancer treatment[J]. APSB,2018,53(7):1090-1099.
    [5]
    Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide?[J]. Cell Cycle,2006,5(8):812-817.
    [6]
    Cote B, Rao D, Alany RG, et al. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors[J]. Adv Drug Delivery Rev,2019,144:16-34.
    [7]
    Ryan TJ. Structure and function of lymphatics[J]. J Invest Dermatol,1989,93(2 Suppl):18s-24s.
    [8]
    Card CM, Yu SS, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity[J]. J Clin Invest,2014,124(3):943-952.
    [9]
    Swartz MA. The physiology of the lymphatic system[J]. Adv Drug Deliv Rev,2001,50(1):3-20.
    [10]
    Kawada K, Hosogi H, Sonoshita M, et al. Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes[J]. Oncogene,2007,26(32):4679-4688.
    [11]
    Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature,2001,410(6824):50-56.
    [12]
    Kawada K, Sonoshita M, Sakashita H, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes[J]. Cancer Res,2004,64(11):4010-4017.
    [13]
    Stacker SA, Baldwin ME, Achen MG. The role of tumor lymphangiogenesis in metastatic spread[J]. FASEB J,2002,16(9):922-934.
    [14]
    White RR, Stanley WE, Johnson JL, et al. Long-term survival in 2,505 patients with melanoma with regional lymph node metastasis[J]. Ann Surg,2002,235(6):879-887.
    [15]
    Fife K, Thompson JF. Lymph-node metastases in patients with melanoma: what is the optimum management?[J]. Lancet Oncol,2001,2(10):614-621.
    [16]
    Ryan GM, Kaminskas LM, Bulitta JB, et al. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin[J]. J Control Release,2013,172(1):128-136.
    [17]
    Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update[J]. Adv Drug Deliv Rev,2008,60(6):702-716.
    [18]
    Shao K, Singha S, Clemente-Casares X, et al. Nanoparticle-based immunotherapy for cancer[J]. ACS Nano,2015,9(1):16-30.
    [19]
    Cho K, Wang X, Nie SM, et al. Therapeutic nanoparticles for drug delivery in cancer[J]. Clin Cancer Res,2008,14(5):1310-1316.
    [20]
    Wang MY, Li T, Jiang SG, et al. Recent advances in liposome-based co-delivery systems for combination cancer therapy[J]. Chin J Bioprocess Engineer(生物加工过程),2018,16(5):33-41.
    [21]
    Chen X, Kang Y, Wu J, et al. Advances in biodegradable functional polymers based protein drug delivery system [J]. J China Pharm Univ (中国药科大学学报),2017,48(2):142-149.
    [22]
    Abellan-Pose R, Csaba N, Alonso MJ. Lymphatic targeting of nanosystems for anticancer drug therapy[J]. Curr Pharm Des,2016,22(9):1194-1209.
    [23]
    Attili-Qadri S, Karra N, Nemirovski A, et al. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption[J]. Proc Natl Acad Sci U S A,2013,110 (43):17498-17503.
    [24]
    Chen JH, Wang L, Yao Q, et al. Drug concentrations in axillary lymph nodes after lymphatic chemotherapy on patients with breast cancer[J]. Breast Cancer Res,2004,6(4):474-477.
    [25]
    Harvey AJ, Kaestner SA, Sutter DE, et al. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs[J]. Pharm Res,2011,28(1):107-116.
    [26]
    Oussoren C, Velinova M, Scherphof G, et al. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. IV. Fate of liposomes in regional lymph nodes[J]. Biochim Biophys Acta,1998,1370(2):259-272.
    [27]
    Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery[J]. Curr Opin Chem Eng,2015,7:65-74.
    [28]
    Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers[J]. J Control Release,2014,193:241-256.
    [29]
    Rao DA, Forrest ML, Alani AW, et al. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery[J]. J Pharm Sci,2010,99 (4):2018-2031.
    [30]
    Zhang YN, Lazarovits J, Poon W, et al. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity[J]. Nano Lett,2019,19(10):7226-7235.
    [31]
    Cabral H, Makino J, Matsumoto Y, et al. Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers[J]. ACS Nano,2015,9(5):4957-4967.
    [32]
    Moghimi SM. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes[J]. Biomaterials,2006,27(1):136-144.
    [33]
    Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics[J]. Adv Drug Deliv Rev,1995,17(1):129-148.
    [34]
    Zeng Q, Jiang H, Wang T, et al. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses[J]. J Control Release,2015,200:1-12.
    [35]
    Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity[J]. Nat Rev Drug Discov,2015,14(11):781-803.
    [36]
    Chen JH, Ling R, Yao Q, et al. Effect of small-sized liposomal adriamycin administered by various routes on a metastatic breast cancer model[J]. Endocr Relat Cancer,2005,12(1):93-100.
    [37]
    Doddapaneni BS, Kyryachenko S, Chagani SE, et al. A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma[J]. J Control Release,2015,220(Pt A):503-514.
    [38]
    Zhang ZP, Tongchusak S, Mizukami Y, et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery[J]. Biomaterials,2011,32(14):3666-3678.
    [39]
    Kaminskas LM, Kota J, McLeod VM, et al. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats[J]. J Control Release,2009,140(2):108-116.
    [40]
    Jiang H, Wang Q, Li L, et al. Turning the old adjuvant from gel to nanoparticles to amplify CD8 + T cell responses [J]. Adv Sci,2017,5(1):1700426.doi: 10.1002/advs.201700426.
    [41]
    Hong XY, Zhong XF, Du GS, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency [J]. Sci Adv,2020,6(25): eaaz4462.
    [42]
    Laakkonen P, Porkka K, Hoffman JA, et al. A tumor-homing peptide with a targeting specificity related to lymphatic vessels[J]. Nat Med,2002,8(7):751-755.
    [43]
    Yan ZQ, Wang F, Wen ZY, et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor[J]. J Control Release,2012,157(1):118-125.
    [44]
    Luo GP, Yu XJ, Jin C, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors[J]. Int J Pharm,2010,385(1/2):150-156.
    [45]
    Jin L, Nakajima M, Nicolson GL. Immunochemical localization of heparanase in mouse and human melanomas[J]. Int J Cancer,1990,45(6):1088-1095.
    [46]
    Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion[J]. Biochim Biophys Acta,2001,1471(3):99-108.
    [47]
    Dafni H, Cohen B, Ziv K, et al. The role of heparanase in lymph node metastatic dissemination: dynamic contrast-enhanced MRI of Eb lymphoma in mice[J]. Neoplasia,2005,7(3):224-233.
    [48]
    Ye TT, Jiang XW, Li J, et al. Low molecular weight heparin mediating targeting of lymph node metastasis based on nanoliposome and enzyme-substrate interaction[J]. Carbohydr Polym,2015,122:26-38.
    [49]
    Yang WH, Luo DF, Wang SX, et al. TMTP1, a novel tumor-homing peptide specifically targeting metastasis[J]. Clin Cancer Res,2008,14(17):5494-5502.
    [50]
    Wei R, Jiang GY, Lv MQ, et al. TMTP1-modified indocyanine green-loaded polymeric micelles for targeted imaging of cervical cancer and metastasis sentinel lymph node in vivo[J]. Theranostics,2019,9(24):7325-7344.
    [51]
    Lim HY, Thiam CH, Yeo KP, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL[J]. Cell Metab,2013,17 (5):671-684.
    [52]
    Kuai R, Sun XQ, Yuan WM, et al. Subcutaneous nanodisc vaccination with neoantigens for combination cancer immunotherapy[J]. Bioconjugate Chem,2018,29(3):771-775.
    [53]
    Kuai R, Ochyl LJ, Bahjat KS, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy[J]. Nat Mater,2017,16(4):489-496.
    [54]
    Caminschi I, Maraskovsky E, Heath WR. Targeting dendritic cells in vivo for cancer therapy[J]. Front Immunol,2012,3:13.
    [55]
    Tacken PJ, de Vries IJM, Torensma R, et al. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting[J]. Nat Rev Immunol,2007,7(10):790-802.
    [56]
    Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines[J]. Trends in Immunology,2006,27(12):573-579.
    [57]
    Huang SQ, Shi M, He YN, et al. Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system [J]. J China Pharm Univ (中国药科大学学报),2019,50(6):743-752.
    [58]
    Zhang LH, Wu SJ, Qin Y, et al. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy[J]. Nano Lett,2019,19(7):4237-4249.
    [59]
    Wang C, Liu P, Zhuang Y, et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory[J]. Vaccine,2014,32(42):5475-5483.
  • Related Articles

    [1]TANG Xiaohang, SONG Huilin, YAO Liying, QIN Guowen, WANG Xingchen, LIU Wenyuan, JI Shunli. Determination of non-steroidal anti-inflammatory drugs in the environmental water samples by a polyvinylimide-modified magnetic nanoparticles-based solid phase extraction coupled with high-performance liquid chromatography[J]. Journal of China Pharmaceutical University, 2024, 55(4): 485-492. DOI: 10.11665/j.issn.1000-5048.2023081802
    [2]HUANG Haoran, SHEN Jiajia, HU Kangrui, LI Changjian, XIE Lin, WANG Guangji, LIANG Yan. Quantitative determination of endogenous histamine and histidine in biological matrices by double adsorption based on HPLC-MS/MS[J]. Journal of China Pharmaceutical University, 2022, 53(1): 86-92. DOI: 10.11665/j.issn.1000-5048.20220113
    [3]YU Lili, CHU Tingting, HOU Chenzhi, WANG Youmei, DI Bin. Quantitative determination of 10 illicit drugs in wastewater by liquid-liquid extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of China Pharmaceutical University, 2021, 52(6): 707-712. DOI: 10.11665/j.issn.1000-5048.20210608
    [4]PAN Shiyuan, ZOU Qiaogen, HAN Mo, GAO Qianqian. Determination of imidafenacin in human plasma by UPLC-MS/MS and its bioequivalence[J]. Journal of China Pharmaceutical University, 2019, 50(5): 579-584. DOI: 10.11665/j.issn.1000-5048.20190511
    [5]XU Dejin, YUAN Wenbo, LYU Juan. Determination of vancomycin in human serum by in situ formed ionic liquids microextraction-ultra performance liquid chromatography(ISFILM-UPLC)methods[J]. Journal of China Pharmaceutical University, 2017, 48(2): 196-200. DOI: 10.11665/j.issn.1000-5048.20170210
    [6]HU Linlin, GUO Nan, ZHANG Xueli, SHAO Hua. Determination of daptomycin by UPLC-MS/MS and its pharmacokinetic eva-luation in critically ill patients[J]. Journal of China Pharmaceutical University, 2015, 46(6): 700-706. DOI: 10.11665/j.issn.1000-5048.20150611
    [7]YUAN Wenbo, DING Yongjuan, XU Jingjing. Determination of 5-fluorouracil in serum by direct protein precipitation-ultra performance liquid chromatography[J]. Journal of China Pharmaceutical University, 2015, 46(1): 81-84. DOI: 10.11665/j.issn.1000-5048.20150111
    [8]LIU Yongli, ZHAO Zhenxia, LI Dongmei, FENG Li. Simultaneous determination of seven components in Huoxiang Zhengqi liquid by ultra-performance liquid chromatography[J]. Journal of China Pharmaceutical University, 2013, 44(3): 249-252. DOI: 10.11665/j.issn.1000-5048.20130312
    [9]Multiresidue determination of fluoroquinolones in eggs by solid-phase extraction-LC-MS/MS[J]. Journal of China Pharmaceutical University, 2010, 41(1): 60-65.
    [10]Determination of fluoroquinolones multiresidue in milk by solid-phase extraction - LC-MS/MS[J]. Journal of China Pharmaceutical University, 2009, 40(1): 62-66.
  • Cited by

    Periodical cited type(14)

    1. 郑吴淇,宁弘宇,陈昊,黄忠平,范一雷,柯星. 流动注射-串联质谱法分析污水中11种毒品. 分析试验室. 2024(05): 705-710 .
    2. 刘昕,王兵益,杨发震. 水环境毒品监测用于毒情评估的标准体系研究. 云南警官学院学报. 2023(04): 7-12 .
    3. 彭诗琪,赵嘉辉,赖华杰,桑柳波. 基于阳离子交换的固相萃取与液相色谱—串联质谱法联用分析污水中的17种非法药物. 化学研究与应用. 2023(08): 1956-1965 .
    4. 李雪蕾,袁健彪. 浅谈生活污水中毒品检测技术的分析和应用. 中国石油和化工标准与质量. 2022(04): 41-43 .
    5. 郭晶晶,陈丹萍,董露斌,杨飞,胡双英. SPE-HPLC-ESI-MS/MS检测污水中常见13种违禁药物的方法. 新型工业化. 2022(04): 51-54+58 .
    6. 王叶,徐磊,徐鹏,杭太俊,宋敏,王优美,徐慧. 污水中常见毒品的分析方法优化及验证. 中国药科大学学报. 2022(04): 467-472 . 本站查看
    7. 李雪松. 生活污水中滥用药物检测技术的应用与分析. 生物化工. 2022(04): 58-61 .
    8. 王欢博,米兰,霍婷婷,唐恬,徐布一. 大气环境中毒品监测研究进展. 环境化学. 2022(09): 2974-2985 .
    9. 王平,刘晓云,郑振成,梁桂巧,赖胜强. 应用固相萃取-超高效液相色谱-串联质谱法同时检测城市污水中氟胺酮及2种位置异构体. 中国司法鉴定. 2022(05): 67-72 .
    10. 向平. 污水毒品监测技术:进展、挑战与展望. 中国司法鉴定. 2022(05): 17-21 .
    11. 丁艳,乔宏伟,陈捷,张婷婷,花镇东,杭太俊,刘培培. 在线固相萃取-超高效液相色谱-串联质谱法同时检测污水中氟胺酮等21种毒品及其代谢物. 中国司法鉴定. 2022(05): 39-50 .
    12. 赵明明,刘冬娴,伍岚,刘炜,贺江南,陈志伟,易荣楠. 固相萃取/液质联用法检测污水中14种毒品及代谢物. 中国给水排水. 2022(24): 133-138 .
    13. 王美丽,李敦毅. QuEChERS法提取-液相色谱-质谱法检测分析制药园区污水中青霉素、洁霉素、土霉素、四环素和庆大霉素残留方法的建立. 分析仪器. 2021(04): 150-154 .
    14. Jingyuan Wang,Likai Qia,Chenzhi Hou,Tingting Zhang,Mengyi Chen,Haitao Meng,Mengxiang Su,Hui Xu,Zhendong Hua,Youmei Wang,Bin Di. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS. Journal of Pharmaceutical Analysis. 2021(06): 739-745 .

    Other cited types(2)

Catalog

    Article views (379) PDF downloads (725) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return