Citation: | CHEN Xian, GUO Wenjing, YANG Liliang, ZHOU Yuxin, GUO Qinglong. Research progress on the role of heat shock protein 27 in prostate cancer[J]. Journal of China Pharmaceutical University, 2020, 51(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20200613 |
[1] |
. Trends Biochem Sci,2016,41(4):311?323.
|
[2] |
Saini J,Sharma PK. Clinical,prognostic and therapeutic significance of heat shock proteins in cancer[J]. Curr Drug Targets,2018,19(13):1478?1490.
|
[3] |
Wu JM,Liu TE,Rios Z,et al. Heat shock proteins and cancer[J]. Trends Pharmacol Sci,2017,38(3):226?256.
|
[4] |
DeSantis CE,Lin CC,Mariotto AB,et al. Cancer treatment and survivorship statistics,2014[J]. CA:A Cancer J Clin,2014,64(4):252?271.
|
[5] |
Conteduca V,Jayaram A,Romero-Laorden N,et al. Plasma androgen receptor and docetaxel for metastatic castration-resistant prostate cancer[J]. Eur Urol,2019,75(3):368?373.
|
[6] |
Boumahdi S,de Sauvage FJ. The great escape:tumour cell plasticity in resistance to targeted therapy[J]. Nat Rev Drug Discov,2020,19(1):39?56.
|
[7] |
Hoter,Rizk,Naim. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer[J]. Cancers,2019,11(8):1194.
|
[8] |
Yun CW,Kim HJ,Lim JH,et al. Heat shock proteins:agents of cancer development and therapeutic targets in anti-cancer therapy[J]. Cells,2019,9(1):60.
|
[9] |
Carra S,Alberti S,Arrigo PA,et al. The growing world of small heat shock proteins:from structure to functions[J]. Cell Stress Chaperones,2017,22(4):601?611.
|
[10] |
Katsogiannou M,Ziouziou H,Karaki S,et al. The hallmarks of castration-resistant prostate cancers[J]. Cancer Treat Rev,2015,41(7):588?597.
|
[11] |
Haslbeck M,Weinkauf S,Buchner J. Small heat shock proteins:simplicity meets complexity[J]. J Biol Chem,2019,294(6):2121?2132.
|
[12] |
Jego G,Hazoumé A,Seigneuric R,et al. Targeting heat shock proteins in cancer[J]. Cancer Lett,2013,332(2):275?285.
|
[13] |
Cayado-Gutiérrez N,Moncalero VL,Rosales EM,et al. Downregulation of HSP27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN[J]. Cell Stress Chaperones,2013,18(2):243?249.
|
[14] |
Abisambra JF,Blair LJ,Hill SE,et al. Phosphorylation dynamics regulate HSP27-mediated rescue of neuronal plasticity deficits in tau transgenic mice[J]. J Neurosci,2010,30(46):15374?15382.
|
[15] |
Chatterjee S,Burns TF. Targeting heat shock proteins in cancer:a promising therapeutic approach[J]. Int J Mol Sci,2017,18(9):1978.
|
[16] |
Gibert B,Simon S,Dimitrova V,et al. Peptide aptamers:tools to negatively or positively modulate HSPB1(27) function[J]. Philos Trans R Soc Lond B Biol Sci,2013,368(1617):20120075.
|
[17] |
Yu L,Yuan X,Wang D,et al. Selective regulation of p38β protein and signaling by integrin-linked kinase mediates bladder cancer cell migration[J]. Oncogene,2014,33(6):690?701.
|
[18] |
Zhao M,Shen F,Yin YX,et al. Increased expression of heat shock protein 27 correlates with peritoneal metastasis in epithelial ovarian cancer[J]. Reprod Sci,2012,19(7):748?753.
|
[19] |
Thuringer D,Jego G,Wettstein G,et al. Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3[J]. Faseb J,2013,27(10):4169?4183.
|
[20] |
O''''Callaghan-Sunol C,Gabai VL,Sherman MY. Hsp27 modulates p53 signaling and suppresses cellular senescence[J]. Cancer Res,2007,67(24):11779?11788.
|
[21] |
Zhang S,Hu YM,Huang YW,et al. Heat shock protein 27 promotes cell proliferation through activator protein-1 in lung cancer[J]. Oncol Lett,2015,9(6):2572?2576.
|
[22] |
Hu WM,Wang JP,Luo GQ,et al. Proteomics-based analysis of differentially expressed proteins in the CXCR1-knockdown gastric carcinoma MKN45 cell line and its parental cell[J]. Acta Biochim Biophys Sin (Shanghai),2013,45(10):857?866.
|
[23] |
Bruey JM,Ducasse C,Bonniaud P,et al. Hsp27 negatively regulates cell death by interacting with cytochrome C[J]. Nat Cell Biol,2000,2(9):645?652.
|
[24] |
Li JY,Hu WX,Lan Q. The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27[J]. J Neuro-oncol,2012,110(2):187?194.
|
[25] |
Liu CC,Chou KT,Hsu JW,et al. High metabolic rate and stem cell characteristics of esophageal cancer stem-like cells depend on the Hsp27-AKT-HK2 pathway[J]. Int J Cancer,2019,145(8):2144?2156.
|
[26] |
Kostenko S,Moens U. Heat shock protein 27 phosphorylation:kinases,phosphatases,functions and pathology[J]. Cell Mol Life Sci,2009,66(20):3289?3307.
|
[27] |
Dubrez L,Causse S,Borges Bonan N,et al. Heat-shock proteins:chaperoning DNA repair[J]. Oncogene,2020,39(3):516?529.
|
[28] |
Chine VB,Au NPB,Ma CHE. Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy[J]. Neurobiol Dis,2019,130:104492.
|
[29] |
Yin CF,Kao SC,Hsu CL,et al. Phosphoproteome analysis reveals dynamic heat shock protein 27 phosphorylation in tanshinone IIA-induced cell death[J]. J Proteome Res,2020,19(4):1620?1634.
|
[30] |
Okuno M,Yasuda I,Adachi S,et al. The significance of phosphorylated heat shock protein 27 on the prognosis of pancreatic cancer[J]. Oncotarget,2016,7(12):14291?14299.
|
[31] |
Guo Y,Ziesch A,Hocke S,et al. Overexpression of heat shock protein 27 (HSP 27) increases gemcitabine sensitivity in pancreatic cancer cells through S-phase arrest and apoptosis[J]. J Cell Mol Med,2015,19(2):340?350.
|
[32] |
Kang DX,Choi HJ,Kang SJ,et al. Ratio of phosphorylated HSP27 to nonphosphorylated HSP27 biphasically Acts as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells[J]. Cell Signal,2015,27(4):807?817.
|
[33] |
Fujita K,Nonomura N. Role of androgen receptor in prostate cancer:a review[J]. World J Mens Health,2019,37(3):288?295.
|
[34] |
Cano LQ,Lavery DN,Bevan CL. Mini-review:foldosome regulation of androgen receptor action in prostate cancer[J]. Mol Cell Endocrinol,2013,369(1/2):52?62.
|
[35] |
Zoubeidi A,Zardan A,Beraldi E,et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity[J]. Cancer Res,2007,67(21):10455?10465.
|
[36] |
Cinar B,Mukhopadhyay NK,Meng GY,et al. Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains[J]. J Biol Chem,2007,282(40):29584?29593.
|
[37] |
Ciccarese C,Massari F,Iacovelli R,et al. Prostate cancer heterogeneity:discovering novel molecular targets for therapy[J]. Cancer Treat Rev,2017,54:68?73.
|
[38] |
Li J,Fu X,Cao S,et al. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27)[J]. J Biol Chem,2018,293(33):12719?12729.
|
[39] |
Kiliccioglu I,Konac E,Dikmen AU,et al. Hsp-27 and NF-κB pathway is associated with AR/AR-V7 expression in prostate cancer cells[J]. Gene,2019,697:138?143.
|
[40] |
Zheng G,Zhang Z,Liu H,et al. HSP27-mediated extracellular and intracellular signaling pathways synergistically confer chemoresistance in squamous cell carcinoma of tongue[J]. Clin Cancer Res,2018,24(5):1163?1175.
|
[41] |
Baylot V,Katsogiannou M,Andrieu C,et al. Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer[J]. Mol Ther,2012,20(12):2244?2256.
|
[42] |
Azad AA,Zoubeidi A,Gleave ME,et al. Targeting heat shock proteins in metastatic castration-resistant prostate cancer[J]. Nat Rev Urol,2015,12(1):26?36.
|
[43] |
Zoubeidi A,Zardan A,Wiedmann RM,et al. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD[J]. Cancer Res,2011,71(14):5054.
|
[44] |
Hayashi N,Peacock JW,Beraldi E,et al. Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch[J]. Cell Death Differ,2012,19(6):990?1002.
|
[45] |
Aloy MT,Hadchity E,Bionda C,et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells[J]. Int J Radiat Oncol,2008,70(2):543?553.
|
[46] |
Cui Y,Sun Y,Hu S,et al. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals[J]. Oncogene,2016,35(47):6065?6076.
|
[47] |
Ketteler J,Wittka A,Leonetti D,et al. Caveolin-1 regulates the ASMase/ceramide-mediated radiation response of endothelial cells in the context of tumor-stroma interactions[J]. Cell Death Dis,2020,11(4):228.
|
[48] |
Andrieu C,Taieb D,Baylot V,et al. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E[J]. Oncogene,2010,29(13):1883?1896.
|
[49] |
Ziouziou H,Andrieu C,Laurini E,et al. Targeting Hsp27/eIF4E interaction with phenazine compound:a promising alternative for castration-resistant prostate cancer treatment[J]. Oncotarget,2017,8(44):77317?77329.
|
[50] |
Voll EA,Ogden IM,Pavese JM,et al. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression[J]. Oncotarget,2014,5(9):2648?2663.
|
[51] |
Lee JW,Kwak HJ,Lee JJ,et al. HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression[J]. Eur J Cell Biol,2008,87(6):377?387.
|
[52] |
Cordonnier T,Bishop JL,Shiota M,et al. Hsp27 regulates EGF/β-catenin mediated epithelial to mesenchymal transition in prostate cancer[J]. Int J Cancer,2015,136(6):
|
[53] |
Shiota M,Bishop JL,Nip KM,et al. Hsp27 regulates epithelial mesenchymal transition,metastasis,and circulating tumor cells in prostate cancer[J]. Cancer Res,2013,73(10):3109?3119.
|
[54] |
Cho SY,Kang S,Kim DS,et al. HSP27,ALDH6A1 and prohibitin act as a trio-biomarker to predict survival in late metastatic prostate cancer[J]. Anticancer Res,2018,38(11):6551?6560.
|
[55] |
Foster CS,on behalf of the Trans Atlantic Prostate Group,Dodson AR,et al. Hsp-27 expression at diagnosis predicts poor clinical outcome in prostate cancer independent of ETS-gene rearrangement[J]. Br J Cancer,2009,101(7):1137?1144.
|
[56] |
Loriot Y,Zoubeidi A,Gleave ME. Targeted therapies in metastatic castration-resistant prostate cancer:beyond the androgen receptor[J]. Urol Clin North Am,2012,39(4):517?531.
|
[57] |
Dong Y,Chen Y,Zhu D,et al. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy[J]. J Control Release,2020,322:416?425.
|
[58] |
Kumano M,Furukawa J,Shiota M,et al. Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer[J]. Mol Cancer Ther,2012,11(8):1661?1671.
|
[59] |
Nappi L,Aguda AH,Nakouzi NA,et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models[J]. J Clin Invest,2020,130(2):699?714.
|
[60] |
Martin PL,Yin JJ,Seng V,et al. Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53-deficient prostate cancer[J]. Oncogene,2017,36(4):525?533.
|
[61] |
Kim JH,Jung YJ,Choi B,et al. Overcoming HSP27-mediated resistance by altered dimerization of HSP27 using small molecules[J]. Oncotarget,2016,7(33):53178?53190.
|
[62] |
Heinrich JC,Donakonda S,Haupt VJ,et al. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells[J]. Oncotarget,2016,7(42):68156?68169.
|
[1] | LI Xueyan, CHEN Na, JIANG Cheng. Research progress of KRAS inhibitors[J]. Journal of China Pharmaceutical University, 2024, 55(2): 257-269. DOI: 10.11665/j.issn.1000-5048.2024010801 |
[2] | YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503 |
[3] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[4] | ZHAN Kangning, QUAN Xu, HUANG Zhangjian, ZHAO Liwen. Research progress of protein arginine methyltransferase 5 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(3): 371-378. DOI: 10.11665/j.issn.1000-5048.20210315 |
[5] | LI Zhiyan, LIU Jie, LI Bingyan, JIANG Cheng. Design, synthesis and evaluation of peptidomimetics targeting the polo-box domain of polo-like kinase 1[J]. Journal of China Pharmaceutical University, 2020, 51(3): 287-294. DOI: 10.11665/j.issn.1000-5048.20200305 |
[6] | LIANG Tingting, WANG Wenjie, HE Guangchao, HE Guangchao, XU Yungen. Research progress of ERK small molecule inhibitors[J]. Journal of China Pharmaceutical University, 2020, 51(3): 260-269. DOI: 10.11665/j.issn.1000-5048.20200302 |
[7] | SHI Jinyu, BAI Ying, PENG Kewen, ZHANG Wenhui, ZHU Qihua, XU Yungen. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. Journal of China Pharmaceutical University, 2019, 50(5): 523-530. DOI: 10.11665/j.issn.1000-5048.20190503 |
[8] | WANG Tianshuai, YU Junjie, ZHANG Yan, ZENG Jinjin, CUI Jingxin. Advances in platinum-intercalators of DNA as antitumor agents[J]. Journal of China Pharmaceutical University, 2019, 50(5): 505-515. DOI: 10.11665/j.issn.1000-5048.20190501 |
[9] | GUO Yahui, LU Peng, WANG Yubin, ZHANG Huibin. Progress in the researches for antitumor NEDD8 activating enzyme inhibitors[J]. Journal of China Pharmaceutical University, 2017, 48(6): 646-653. DOI: 10.11665/j.issn.1000-5048.20170603 |
[10] | KONG Kai-lai, LU Shuai, GAO Yi-ping, YANG Pei, TANG Wei-fang, LU Tao. Advances on the study of PLK1 inhibitors as antitumor agents[J]. Journal of China Pharmaceutical University, 2011, 42(1): 9-15. |