• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Yahui, GAO Lu, WANG Yajing, YAN Fang. Advances in the research on mechanism of tumor metabolism regulated by c-Myc[J]. Journal of China Pharmaceutical University, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316
Citation: LIU Yahui, GAO Lu, WANG Yajing, YAN Fang. Advances in the research on mechanism of tumor metabolism regulated by c-Myc[J]. Journal of China Pharmaceutical University, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316

Advances in the research on mechanism of tumor metabolism regulated by c-Myc

More Information
  • Received Date: January 28, 2021
  • Revised Date: April 27, 2021
  • The transcription factor c-Myc regulates the proliferation, differentiation, metabolism and other key processes of normal cells extensively.The unleashed MYC oncogene frequently produces abundant c-Myc protein, which directly regulates the gene expression of key metabolic enzymes, or tumor-related metabolic pathways by inhibiting microRNA, leading to abnormal metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis, and elevated fatty acid and nucleotide synthesis.This paper briefly summarizes how c-Myc regulated metabolism on glycolysis, glutamine metabolism, tricarboxylic acid cycle, lipid metabolism and nucleotide synthesis in cancer cell,which provides some theoretical reference for the development of antitumor targets and drugs involving c-Myc.
  • [1]
    . Cell,2012,149(1):22-35.
    [2]
    Annibali D,Whitfield JR,Favuzzi E,et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis[J]. Nat Commun,2014,5:4632.
    [3]
    Li ST,Huang,Shen S,et al. Myc-mediated SDHA acetylation triggers epigenetic regulation of gene expression and tumorigenesis[J]. Nat Metab,2020,2(3):256-269.
    [4]
    Faubert B,Solmonson A,DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):5473.
    [5]
    Kim JW,Zeller KI,Wang YY,et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays[J]. Mol Cell Biol,2004,24(13):5923-5936.
    [6]
    Liberti MV,Locasale JW. The Warburg effect:how does it benefit cancer cells[J]?Trends Biochem Sci,2016,41(3):211-218.
    [7]
    Edmunds LR,Sharma L,Kang A,et al. C-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate[J]. J Biol Chem,2015,290(33):20100.
    [8]
    Cunningham JT,Moreno MV,Lodi A,et al. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme,PRPS2,to drive cancer[J]. Cell,2014,157(5):1088-1103.
    [9]
    Davidson SM,Papagiannakopoulos T,Olenchock BA,et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer[J]. Cell Metab,2016,23(3):517-528.
    [10]
    Mayers JR,Vander Heiden MG. Nature and nurture:what determines tumor metabolic phenotypes[J]?Cancer Res,2017,77(12):3131-3134.
    [11]
    Carroll PA,Diolaiti D,McFerrin L,et al. Deregulated Myc requires MondoA/MLx for metabolic reprogramming and tumorigenesis[J]. Cancer Cell,2015,27(2):271-285.
    [12]
    Nair SK,Burley SK. X-ray structures of myc-max and mad-max recognizing DNA - molecular bases of regulation by proto-oncogenic transcription factors[J]. Cell,2003,112(2):193-205.
    [13]
    Dang CV. Gene regulation:fine-tuned amplification in cells[J]. Nature,2014,511(7510):417-418.
    [14]
    Sabò A,Kress TR,Pelizzola M,et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis[J]. Nature,2014,511(7510):488-492.
    [15]
    Walz S,Lorenzin F,Morton J,et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles[J]. Nature,2014,511(7510):483-487.
    [16]
    Macek P,Cliff MJ,Embrey KJ,et al. Myc phosphorylation in its basic helix-loop-helix region destabilizes transient α-helical structures,disrupting Max and DNA binding[J]. J Biol Chem,2018,293(24):9301-9310.
    [17]
    Zhou W,Liotta LA,Petricoin EF. The Warburg effect and mass spectrometry-based proteomic analysis[J]. Cancer Genom Proteom,2017,14(4):211-218.
    [18]
    Gao Q,Zhu HW,Dong LQ,et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell,2019,179(2):561-577.
    [19]
    Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response[J]. World J Biol Chem,2015,6(4):281-289.
    [20]
    Gentric G,Mieulet V,Mechta-Grigoriou F. Heterogeneity in cancer metabolism:new concepts in an old field[J]. Antioxid Redox Signal,2017,26(9):462-485.
    [21]
    Coller HA. MYC sets a tumour-stroma metabolic loop[J]. Nat Cell Biol,2018,20(5):506-507.
    [22]
    Yan W,Wu X,Zhou W,et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol,2018,20(5):597-609.
    [23]
    San-Millán I,Brooks GA. Reexamining cancer metabolism:lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect[J]. Carcinogenesis,2017,38(2):119-133.
    [24]
    Wise DR,DeBerardinis RJ,Mancuso A,et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci U S A,2008,105(48):18782-18787.
    [25]
    Shen LL,O''Shea JM,Kaadige MR,et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP[J]. Proc Natl Acad Sci U S A,2015,112(17):5425-5430.
    [26]
    Israelsen WJ,Vander Heiden MG. Pyruvate kinase:Function,regulation and role in cancer[J]. Semin Cell Dev Biol,2015,43:43-51.
    [27]
    Patra KC,Hay N. The pentose phosphate pathway and cancer[J]. Trends Biochem Sci,2014,39(8):347-354.
    [28]
    Morrish F,Noonan J,Perez-Olsen C,et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry[J]. J Biol Chem,2010,285(47):36267-36274.
    [29]
    Wang RN,Dillon CP,Shi LZ,et al. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity,2011,35(6):871-882.
    [30]
    Yang M,Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer,2016,16(10):650-662.
    [31]
    Anderton B,Camarda R,Balakrishnan S,et al. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer[J]. EMBO Rep,2017,18(4):569-585.
    [32]
    Sun LC,Song LB,Wan QF,et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions[J]. Cell Res,2015,25(4):429-444.
    [33]
    Still ER,Yuneva MO. Hopefully devoted to Q:targeting glutamine addiction in cancer[J]. Br J Cancer,2017,116(11):1375-1381.
    [34]
    Bhutia YD,Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer[J]. Biochim Biophys Acta,2016,1863(10):2531-2539.
    [35]
    Qing GL,Li B,Vu A,et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation[J]. Cancer Cell,2012,22(5):631-644.
    [36]
    Gao P,Tchernyshyov I,Chang TC,et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature,2009,458(7239):762-765.
    [37]
    Csibi A,Lee G,Yoon SO,et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation[J]. Curr Biol,2014,24(19):2274-2280.
    [38]
    Shroff EH,Eberlin LS,Dang VM,et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism[J]. Proc Natl Acad Sci U S A,2015,112(21):6539-6544.
    [39]
    Korangath P,Teo WW,Sadik H,et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate[J]. Clin Cancer Res,2015,21(14):3263-3273.
    [40]
    Liu W,Hancock CN,Fischer JW,et al. Proline biosynthesis augments tumor cell growth and aerobic glycolysis:involvement of pyridine nucleotides[J]. Sci Rep,2015,5:17206.
    [41]
    Yuneva MO,Fan TW,Allen TD,et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type[J]. Cell Metab,2012,15(2):157-170.
    [42]
    Bott AJ,Peng IC,Fan YJ,et al. Oncogenic myc induces expression of glutamine synthetase through promoter demethylation[J]. Cell Metab,2015,22(6):1068-1077.
    [43]
    Dejure FR,Eilers M. MYC and tumor metabolism:chicken and egg[J]. EMBO J,2017,36(23):3409-3420.
    [44]
    Ma XX,Chong L,Tian R,et al. Identification and quantitation of lipid C=C location isomers:a shotgun lipidomics approach enabled by photochemical reaction[J]. Proc Natl Acad Sci U S A,2016,113(10):2573-2578.
    [45]
    DeBerardinis RJ,Chandel NS. Fundamentals of cancer metabolism[J]. Sci Adv,2016,2(5):e1600200.
    [46]
    Keckesova Z,Donaher JL,de Cock J,et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state[J]. Nature,2017,543(7647):681-686.
    [47]
    Pascual G,Avgustinova A,Mejetta S,et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature,2017,541(7635):41-45.
    [48]
    Tadros S,Shukla SK,King RJ,et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic Reticulum stress in pancreatic cancer[J]. Cancer Res,2017,77(20):5503-5517.
    [49]
    Jeon SM,Chandel NS,Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress[J]. Nature,2012,485(7400):661-665.
    [50]
    Gouw AM,Margulis K,Liu NS,et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth[J]. Cell Metab,2019,30(3):556-572.
    [51]
    Casciano JC,Perry C,Cohen-Nowak AJ,et al. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer[J]. Br J Cancer,2020,122(6):868-884.
    [52]
    Zhong CX,Fan LM,Yao F,et al. HMGCR is necessary for the tumorigenecity of esophageal squamous cell carcinoma and is regulated by Myc[J]. Tumour Biol,2014,35(5):4123-4129.
    [53]
    Leone RD,Powell JD. Metabolism of immune cells in cancer[J]. Nat Rev Cancer,2020,20(9):516-531.
    [54]
    Ferrer CM,Sodi VL,Reginato MJ. O-GlcNAcylation in cancer biology:linking metabolism and signaling[J]. J Mol Biol,2016,428(16):3282-3294.
    [55]
    Sodi VL,Khaku S,Krutilina R,et al. mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer[J]. Mol Cancer Res,2015,13(5):923-933.
    [56]
    Zeng Q,Zhao RX,Chen J,et al. O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis[J]. Proc Natl Acad Sci U S A,2016,113(33):9333-9338.
    [57]
    Li T,Song L,Zhang Y,et al. Molecular mechanism of c-Myc and PRPS1/2 against thiopurine resistance in Burkitt''s lymphoma[J]. J Cell Mol Med,2020,24(12):6704-6715.
    [58]
    Restelli V,Lupi M,Chilà R,et al. DNA damage response inhibitor combinations exert synergistic antitumor activity in aggressive B-cell lymphomas[J]. Mol Cancer Ther,2019,18(7):1255-1264.
  • Related Articles

    [1]YE Zhenning, WU Zhenghong, ZHANG Huaqing. Research progress of blood-brain barrier crossing strategies and brain-targeted drug delivery mediated by nano-delivery system[J]. Journal of China Pharmaceutical University, 2024, 55(5): 590-602. DOI: 10.11665/j.issn.1000-5048.2024052202
    [2]WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902
    [3]YU Zexuan, JU Caoyun, ZHANG Can. Construction and application of gene delivery systems for primary dendritic cells[J]. Journal of China Pharmaceutical University, 2021, 52(4): 438-446. DOI: 10.11665/j.issn.1000-5048.20210406
    [4]FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406
    [5]ZHAO Yuekui, TANG Shanshan, ZHANG Yanfeng, ZONG Li, JIN Liang. Engineered mesenchymal stem cells as targeting therapeutic carriers in cancer therapy[J]. Journal of China Pharmaceutical University, 2016, 47(2): 134-139. DOI: 10.11665/j.issn.1000-5048.20160202
    [6]ZHANG Zhiqing, WANG Fang, ZHOU Ting, ZHANG Guodong, WANG Xiufeng, LI Yunze. A DNA polyaptamer system as a targeted antitumor drug delivery[J]. Journal of China Pharmaceutical University, 2015, 46(4). DOI: 10.11665/j.issn.1000-5048.20150408
    [7]SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103
    [8]JIANG Hulin. Biocompatible polymers for gene delivery in cancer gene therapy[J]. Journal of China Pharmaceutical University, 2013, 44(5): 476-481. DOI: 10.11665/j.issn.1000-5048.20130518
    [9]LI Ying-huan, ZONG Li, ZHU Jia-bi. Formulation optimization of PEGylated cationic liposomes as siRNA delivery system[J]. Journal of China Pharmaceutical University, 2011, 42(5): 412-417.
    [10]Construction of a high epidaunorubicin-producing strain by gene recombination[J]. Journal of China Pharmaceutical University, 2010, 41(3): 283-288.
  • Cited by

    Periodical cited type(3)

    1. 肖湾,顾钰华,孙多志,周呈. 高效液相色谱法测定生活用纸中甲醛、乙二醛、戊二醛的迁移量. 分析仪器. 2024(01): 21-25 .
    2. 李玉立,李珉,马一星,纪宏,朱晓月,何欢,李文东. 疫苗中游离甲醛含量新型高通量检测方法的建立. 药物分析杂志. 2024(08): 1365-1372 .
    3. 姚振,郑莹,陈青连,张英,徐全华. 苯磺顺阿曲库铵注射液中1, 5-戊二醇二丙烯酸酯含量的测定. 海峡药学. 2022(07): 59-62 .

    Other cited types(1)

Catalog

    Article views (1208) PDF downloads (1474) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return