Citation: | LIU Yahui, GAO Lu, WANG Yajing, YAN Fang. Advances in the research on mechanism of tumor metabolism regulated by c-Myc[J]. Journal of China Pharmaceutical University, 2021, 52(3): 379-386. DOI: 10.11665/j.issn.1000-5048.20210316 |
[1] |
. Cell,2012,149(1):22-35.
|
[2] |
Annibali D,Whitfield JR,Favuzzi E,et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis[J]. Nat Commun,2014,5:4632.
|
[3] |
Li ST,Huang,Shen S,et al. Myc-mediated SDHA acetylation triggers epigenetic regulation of gene expression and tumorigenesis[J]. Nat Metab,2020,2(3):256-269.
|
[4] |
Faubert B,Solmonson A,DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science,2020,368(6487):5473.
|
[5] |
Kim JW,Zeller KI,Wang YY,et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays[J]. Mol Cell Biol,2004,24(13):5923-5936.
|
[6] |
Liberti MV,Locasale JW. The Warburg effect:how does it benefit cancer cells[J]?Trends Biochem Sci,2016,41(3):211-218.
|
[7] |
Edmunds LR,Sharma L,Kang A,et al. C-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate[J]. J Biol Chem,2015,290(33):20100.
|
[8] |
Cunningham JT,Moreno MV,Lodi A,et al. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme,PRPS2,to drive cancer[J]. Cell,2014,157(5):1088-1103.
|
[9] |
Davidson SM,Papagiannakopoulos T,Olenchock BA,et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer[J]. Cell Metab,2016,23(3):517-528.
|
[10] |
Mayers JR,Vander Heiden MG. Nature and nurture:what determines tumor metabolic phenotypes[J]?Cancer Res,2017,77(12):3131-3134.
|
[11] |
Carroll PA,Diolaiti D,McFerrin L,et al. Deregulated Myc requires MondoA/MLx for metabolic reprogramming and tumorigenesis[J]. Cancer Cell,2015,27(2):271-285.
|
[12] |
Nair SK,Burley SK. X-ray structures of myc-max and mad-max recognizing DNA - molecular bases of regulation by proto-oncogenic transcription factors[J]. Cell,2003,112(2):193-205.
|
[13] |
Dang CV. Gene regulation:fine-tuned amplification in cells[J]. Nature,2014,511(7510):417-418.
|
[14] |
Sabò A,Kress TR,Pelizzola M,et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis[J]. Nature,2014,511(7510):488-492.
|
[15] |
Walz S,Lorenzin F,Morton J,et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles[J]. Nature,2014,511(7510):483-487.
|
[16] |
Macek P,Cliff MJ,Embrey KJ,et al. Myc phosphorylation in its basic helix-loop-helix region destabilizes transient α-helical structures,disrupting Max and DNA binding[J]. J Biol Chem,2018,293(24):9301-9310.
|
[17] |
Zhou W,Liotta LA,Petricoin EF. The Warburg effect and mass spectrometry-based proteomic analysis[J]. Cancer Genom Proteom,2017,14(4):211-218.
|
[18] |
Gao Q,Zhu HW,Dong LQ,et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell,2019,179(2):561-577.
|
[19] |
Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response[J]. World J Biol Chem,2015,6(4):281-289.
|
[20] |
Gentric G,Mieulet V,Mechta-Grigoriou F. Heterogeneity in cancer metabolism:new concepts in an old field[J]. Antioxid Redox Signal,2017,26(9):462-485.
|
[21] |
Coller HA. MYC sets a tumour-stroma metabolic loop[J]. Nat Cell Biol,2018,20(5):506-507.
|
[22] |
Yan W,Wu X,Zhou W,et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol,2018,20(5):597-609.
|
[23] |
San-Millán I,Brooks GA. Reexamining cancer metabolism:lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect[J]. Carcinogenesis,2017,38(2):119-133.
|
[24] |
Wise DR,DeBerardinis RJ,Mancuso A,et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci U S A,2008,105(48):18782-18787.
|
[25] |
Shen LL,O''Shea JM,Kaadige MR,et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP[J]. Proc Natl Acad Sci U S A,2015,112(17):5425-5430.
|
[26] |
Israelsen WJ,Vander Heiden MG. Pyruvate kinase:Function,regulation and role in cancer[J]. Semin Cell Dev Biol,2015,43:43-51.
|
[27] |
Patra KC,Hay N. The pentose phosphate pathway and cancer[J]. Trends Biochem Sci,2014,39(8):347-354.
|
[28] |
Morrish F,Noonan J,Perez-Olsen C,et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry[J]. J Biol Chem,2010,285(47):36267-36274.
|
[29] |
Wang RN,Dillon CP,Shi LZ,et al. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity,2011,35(6):871-882.
|
[30] |
Yang M,Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer,2016,16(10):650-662.
|
[31] |
Anderton B,Camarda R,Balakrishnan S,et al. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer[J]. EMBO Rep,2017,18(4):569-585.
|
[32] |
Sun LC,Song LB,Wan QF,et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions[J]. Cell Res,2015,25(4):429-444.
|
[33] |
Still ER,Yuneva MO. Hopefully devoted to Q:targeting glutamine addiction in cancer[J]. Br J Cancer,2017,116(11):1375-1381.
|
[34] |
Bhutia YD,Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer[J]. Biochim Biophys Acta,2016,1863(10):2531-2539.
|
[35] |
Qing GL,Li B,Vu A,et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation[J]. Cancer Cell,2012,22(5):631-644.
|
[36] |
Gao P,Tchernyshyov I,Chang TC,et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature,2009,458(7239):762-765.
|
[37] |
Csibi A,Lee G,Yoon SO,et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation[J]. Curr Biol,2014,24(19):2274-2280.
|
[38] |
Shroff EH,Eberlin LS,Dang VM,et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism[J]. Proc Natl Acad Sci U S A,2015,112(21):6539-6544.
|
[39] |
Korangath P,Teo WW,Sadik H,et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate[J]. Clin Cancer Res,2015,21(14):3263-3273.
|
[40] |
Liu W,Hancock CN,Fischer JW,et al. Proline biosynthesis augments tumor cell growth and aerobic glycolysis:involvement of pyridine nucleotides[J]. Sci Rep,2015,5:17206.
|
[41] |
Yuneva MO,Fan TW,Allen TD,et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type[J]. Cell Metab,2012,15(2):157-170.
|
[42] |
Bott AJ,Peng IC,Fan YJ,et al. Oncogenic myc induces expression of glutamine synthetase through promoter demethylation[J]. Cell Metab,2015,22(6):1068-1077.
|
[43] |
Dejure FR,Eilers M. MYC and tumor metabolism:chicken and egg[J]. EMBO J,2017,36(23):3409-3420.
|
[44] |
Ma XX,Chong L,Tian R,et al. Identification and quantitation of lipid C=C location isomers:a shotgun lipidomics approach enabled by photochemical reaction[J]. Proc Natl Acad Sci U S A,2016,113(10):2573-2578.
|
[45] |
DeBerardinis RJ,Chandel NS. Fundamentals of cancer metabolism[J]. Sci Adv,2016,2(5):
|
[46] |
Keckesova Z,Donaher JL,de Cock J,et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state[J]. Nature,2017,543(7647):681-686.
|
[47] |
Pascual G,Avgustinova A,Mejetta S,et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature,2017,541(7635):41-45.
|
[48] |
Tadros S,Shukla SK,King RJ,et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic Reticulum stress in pancreatic cancer[J]. Cancer Res,2017,77(20):5503-5517.
|
[49] |
Jeon SM,Chandel NS,Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress[J]. Nature,2012,485(7400):661-665.
|
[50] |
Gouw AM,Margulis K,Liu NS,et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth[J]. Cell Metab,2019,30(3):556-572.
|
[51] |
Casciano JC,Perry C,Cohen-Nowak AJ,et al. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer[J]. Br J Cancer,2020,122(6):868-884.
|
[52] |
Zhong CX,Fan LM,Yao F,et al. HMGCR is necessary for the tumorigenecity of esophageal squamous cell carcinoma and is regulated by Myc[J]. Tumour Biol,2014,35(5):4123-4129.
|
[53] |
Leone RD,Powell JD. Metabolism of immune cells in cancer[J]. Nat Rev Cancer,2020,20(9):516-531.
|
[54] |
Ferrer CM,Sodi VL,Reginato MJ. O-GlcNAcylation in cancer biology:linking metabolism and signaling[J]. J Mol Biol,2016,428(16):3282-3294.
|
[55] |
Sodi VL,Khaku S,Krutilina R,et al. mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer[J]. Mol Cancer Res,2015,13(5):923-933.
|
[56] |
Zeng Q,Zhao RX,Chen J,et al. O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis[J]. Proc Natl Acad Sci U S A,2016,113(33):9333-9338.
|
[57] |
Li T,Song L,Zhang Y,et al. Molecular mechanism of c-Myc and PRPS1/2 against thiopurine resistance in Burkitt''s lymphoma[J]. J Cell Mol Med,2020,24(12):6704-6715.
|
[58] |
Restelli V,Lupi M,Chilà R,et al. DNA damage response inhibitor combinations exert synergistic antitumor activity in aggressive B-cell lymphomas[J]. Mol Cancer Ther,2019,18(7):1255-1264.
|
[1] | YE Zhenning, WU Zhenghong, ZHANG Huaqing. Research progress of blood-brain barrier crossing strategies and brain-targeted drug delivery mediated by nano-delivery system[J]. Journal of China Pharmaceutical University, 2024, 55(5): 590-602. DOI: 10.11665/j.issn.1000-5048.2024052202 |
[2] | WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902 |
[3] | YU Zexuan, JU Caoyun, ZHANG Can. Construction and application of gene delivery systems for primary dendritic cells[J]. Journal of China Pharmaceutical University, 2021, 52(4): 438-446. DOI: 10.11665/j.issn.1000-5048.20210406 |
[4] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[5] | ZHAO Yuekui, TANG Shanshan, ZHANG Yanfeng, ZONG Li, JIN Liang. Engineered mesenchymal stem cells as targeting therapeutic carriers in cancer therapy[J]. Journal of China Pharmaceutical University, 2016, 47(2): 134-139. DOI: 10.11665/j.issn.1000-5048.20160202 |
[6] | ZHANG Zhiqing, WANG Fang, ZHOU Ting, ZHANG Guodong, WANG Xiufeng, LI Yunze. A DNA polyaptamer system as a targeted antitumor drug delivery[J]. Journal of China Pharmaceutical University, 2015, 46(4). DOI: 10.11665/j.issn.1000-5048.20150408 |
[7] | SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103 |
[8] | JIANG Hulin. Biocompatible polymers for gene delivery in cancer gene therapy[J]. Journal of China Pharmaceutical University, 2013, 44(5): 476-481. DOI: 10.11665/j.issn.1000-5048.20130518 |
[9] | LI Ying-huan, ZONG Li, ZHU Jia-bi. Formulation optimization of PEGylated cationic liposomes as siRNA delivery system[J]. Journal of China Pharmaceutical University, 2011, 42(5): 412-417. |
[10] | Construction of a high epidaunorubicin-producing strain by gene recombination[J]. Journal of China Pharmaceutical University, 2010, 41(3): 283-288. |