• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
HUANG Yu, ZHANG Yinsheng. Advances in the synthetic methods of bicyclo[1.1.1]pentane derivatives[J]. Journal of China Pharmaceutical University, 2022, 53(2): 137-145. DOI: 10.11665/j.issn.1000-5048.20220202
Citation: HUANG Yu, ZHANG Yinsheng. Advances in the synthetic methods of bicyclo[1.1.1]pentane derivatives[J]. Journal of China Pharmaceutical University, 2022, 53(2): 137-145. DOI: 10.11665/j.issn.1000-5048.20220202

Advances in the synthetic methods of bicyclo[1.1.1]pentane derivatives

Funds: This study was supported by the Program of Jiangsu Key Laboratory of Targeted Antiviral Research ([2019] No.1627)
More Information
  • Received Date: October 31, 2021
  • Revised Date: December 21, 2021
  • Bicyclo [1.1.1] pentane (BCP) is a kind of bridged ring skeleton with a three-dimensional structure. As a bioisostere of benzene ring, tert-butyl and alkyne, it has been widely used in the field of medicinal chemistry.With the expansion of its application, the synthesis of BCP and its derivatives has become an increasingly attractive research hotspot for scientists.Based on this, the present article summarizes the main synthetic strategies and methods of BCP derivatives, in the hope of providing some reference for drug discovery researchers and some insight for new synthetic methods of such compounds.
  • [1]
    pentane (BCP) in drug design [J]. J China Pharm Univ (中国药科大学学报),2022,53(1):1-9.
    [2]
    Bauer MR,di Fruscia P,Lucas SCC,et al. Put a ring on it:application of small aliphatic rings in medicinal chemistry[J]. RSC Med Chem,2021,12(4):448-471.
    [3]
    Wiberg KB,Connor DS,Lampman GM. The reaction of 3-bromocyclobutane-1-methyl bromide with sodium:bicyclo [1.1.1] pentane[J]. Tetrahedron Lett,1964,5(10):531-534.
    [4]
    Wiberg KB,Lampman GM,Ciula RP,et al. Bicyclo [1.1.0]butane[J]. Tetrahedron,1965,21(10):2749-2769.
    [5]
    Applequist DE,Renken TL,Wheeler JW. Polar substituent effects in 1,3-disubstituted bicyclo [1.1.1] pentanes[J]. J Org Chem,1982,47(25):4985-4995.
    [6]
    Ma XS,Sloman DL,Han YX,et al. A selective synthesis of 2,2-difluorobicyclo [1.1.1] pentane analogues:"BCP-F 2"[J]. Org Lett,2019,21(18):7199-7203.
    [7]
    Bychek RM,Hutskalova V,Bas YP,et al. Difluoro-substituted bicyclo[1.1.1]pentanes for medicinal chemistry:design,synthesis,and characterization[J]. J Org Chem,2019,84(23):15106-15117.
    [8]
    Gianatassio R,Lopchuk JM,Wang J,et al. Organic chemistry. strain-release amination[J]. Science,2016,351(6270):241-246.
    [9]
    Sterling AJ,Dürr AB,Smith RC,et al. Rationalizing the diverse reactivity of [1.1.1] propellane through σ-π-delocalization[J]. Chem Sci,2020,11(19):4895-4903.
    [10]
    Wiberg KB,Walker FH. [1.1.1]propellane[J]. J Am Chem Soc,1982,104(19):5239-5240.
    [11]
    Semmler K,Szeimies G,Belzner J. Tetracyclo[5.1.0.01,6.02,7]octane,a [1.1.1] propellane derivative,and a new route to the parent hydrocarbon[J]. J Am Chem Soc,1985,107(22):6410-6411.
    [12]
    Belzner J,Bunz U,Semmler K,et al. Concerning the synthesis of[1.1.1] propellane[J]. Chem Ber,1989,122(2):397-398.
    [13]
    Caputo DFJ,Arroniz C,Dürr AB,et al. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1] pentanes[J]. Chem Sci,2018,9(23):5295-5300.
    [14]
    Nugent J,Arroniz C,Shire BR,et al. A general route to bicyclo[1.1.1] pentanes through photoredox catalysis[J]. ACS Catal,2019,9(10):9568-9574.
    [15]
    Nugent J,Shire BR,Caputo DFJ,et al. Synthesis of all-carbon disubstituted bicyclo [1.1.1]pentanes by iron-catalyzed kumada cross-coupling[J]. Angew Chem Int Ed Engl,2020,59(29):11866-11870.
    [16]
    Shin S,Lee S,Choi W,et al. Visible-light-induced 1,3-aminopyridylation of [1.1.1] propellane with N-aminopyridinium salts[J]. Angew Chem Int Ed,2021,60(14):7873-7879.
    [17]
    Wong MLJ,Sterling AJ,Mousseau JJ,et al. Direct catalytic asymmetric synthesis of α-chiral bicyclo [1.1.1]pentanes[J]. Nat Commun,2021,12(1):1644.
    [18]
    Kondo M,Kanazawa J,Ichikawa T,et al. Silaboration of [1.1.1]propellane:a storable feedstock for bicyclo[1.1.1]pentane derivatives[J]. Angew Chem Int Ed Engl,2020,59(5):1970-1974.
    [19]
    Kanazawa J,Maeda K,Uchiyama M. Radical multicomponent carboamination of [1.1.1]propellane[J]. J Am Chem Soc,2017,139(49):17791-17794.
    [20]
    Kim JH,Ruffoni A,Al-Faiyz YSS,et al. Divergent strain-release amino-functionalization of [1.1.1] propellane with electrophilic nitrogen-radicals[J]. Angew Chem Int Ed Engl,2020,59(21):8225-8231.
    [21]
    Zhang XH,Smith RT,Le C,et al. Copper-mediated synthesis of drug-like bicyclopentanes[J]. Nature,2020,580(7802):220-226.
    [22]
    Wiberg KB,Waddell ST. Reactions of [1.1.1] propellane[J]. J Am Chem Soc,1990,112(6):2194-2216.
    [23]
    Della EW,Taylor DK,Tsanaktsidis J. Unusual bridgehead reactivity:formation of [1.1.1] propellane by 1,3-dehydrobromination of 1-bromobicyclo [1.1.1] pentane[J]. Tetrahedron Lett,1990,31(36):5219-5220.
    [24]
    Bunz U,Szeimies G. Reduction of [1.1.1] propellane with lithium 4,4''-di-t-butylbiphenyl:bicyclo [1.1.1] pent-1,3-diyldilithium[J]. Tetrahedron Lett,1990,31(5):651-652.
    [25]
    Messner M,Kozhushkov SI,de Meijere A. Nickel- and palladium-catalyzed cross-coupling reactions at the bridgehead of bicyclo[1.1.1]pentane derivatives — A convenient access to liquid crystalline compounds containing bicyclo [1.1.1] pentane moieties[J]. Eur J Org Chem,2000,2000(7):1137-1155.
    [26]
    Makarov IS,Brocklehurst CE,Karaghiosoff K,et al. Synthesis of bicyclo [1.1.1] pentane bioisosteres of internal alkynes and para-disubstituted benzenes from [1.1.1] propellane[J]. Angew Chem Int Ed Engl,2017,56(41):12774-12777.
    [27]
    Yu SJ,Jing CC,Noble A,et al. Iridium-catalyzed enantioselective synthesis of α-chiral bicyclo [1.1.1] pentanes by 1,3-difunctionalization of [1.1.1] propellane[J]. Org Lett,2020,22(14):5650-5655.
    [28]
    Lopchuk JM,Fjelbye K,Kawamata Y,et al. Strain-release heteroatom functionalization:development,scope,and stereospecificity[J]. J Am Chem Soc,2017,139(8):3209-3226.
    [29]
    Shelp RA,Walsh PJ. Synthesis of BCP benzylamines from 2-azaallyl anions and [1.1.1]propellane[J]. Angew Chem Int Ed Engl,2018,57(48):15857-15861.
    [30]
    Shelp RA,Ciro A,Pu YG,et al. Strain-release 2-azaallyl anion addition/borylation of [1.1.1]propellane:synthesis and functionalization of benzylamine bicyclo[1.1.1]pentyl boronates[J]. Chem Sci,2021,12(20):7066-7072.
    [31]
    Wiberg KB,McMurdie N. Formation and reactions of bicyclo[1.1.1]pentyl-1 cations[J]. J Am Chem Soc,1994,116(26):11990-11998.
    [32]
    Garlets ZJ,Sanders JN,Malik H,et al. Enantioselective C-H functionalization of bicyclo[1.1.1]pentanes[J]. Nat Catal,2020,3(4):351-357.
    [33]
    Zhao JX,Chang Y,Elleraas J,et al. 1,2-Difunctionalized Bicyclo[1.1.1]pentanes:long sought after bioisosteres for ortho/meta-substituted arenes[J]. ChemRxiv,2020. https://doi.org/10. 26434/chemrxiv.13120283.v1.
    [34]
    Ma XS,Han YX,Bennett DJ. Selective synthesis of 1-dialkylamino-2-alkylbicyclo-[1.1.1]pentanes[J]. Org Lett,2020,22(22):9133-9138.
    [35]
    Yang YY,Tsien J,Hughes J,et al. Synthesis of multi-substituted bicycloalkyl boronates:an intramolecular coupling approach to alkyl bioisosteres[J]. ChemRxiv,2021. https://doi.org/ 10.26434/CHEMRXIV.13724827.V1.
  • Related Articles

    [1]YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615
    [2]LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601
    [3]BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403
    [4]FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406
    [5]TIAN Jiping, ZHANG Jian, ZHOU Jinpei, ZHANG Huibin. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. Journal of China Pharmaceutical University, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101
    [6]LIU Kejun, ZHANG Zhimin, RAN Ting, CHEN Hongli, LU Tao, CHEN Yadong. Advances in BET bromodomain protein inhibitors[J]. Journal of China Pharmaceutical University, 2015, 46(3): 264-271. DOI: 10.11665/j.issn.1000-5048.20150302
    [7]ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102
    [8]LI Chunhong, DU Hongjin, WEN Xiao′an, SUN Hongbin. Advances in inhibitors of MDM2 and MDM4[J]. Journal of China Pharmaceutical University, 2015, 46(1): 1-15. DOI: 10.11665/j.issn.1000-5048.20150101
    [9]DENG Lian-bai, LI Ai-xiu, JIN Yu-rui. Advances in the study on inhibitors of RNase H,a novel anti-HIV drug target[J]. Journal of China Pharmaceutical University, 2011, 42(6): 578-584.
    [10]KONG Kai-lai, LU Shuai, GAO Yi-ping, YANG Pei, TANG Wei-fang, LU Tao. Advances on the study of PLK1 inhibitors as antitumor agents[J]. Journal of China Pharmaceutical University, 2011, 42(1): 9-15.
  • Cited by

    Periodical cited type(2)

    1. 郁莉,蒋颖敏,许磊,朱景宇. 分子对接与分子动力学模拟法探究PI3Kδ/度维利塞(Duvelisib)的选择性结合. 化学研究与应用. 2022(02): 341-348 .
    2. 蔡燕飞,陈蕴,史劲松,金坚. 抗肿瘤药物体外药效学评价结合细胞生物学实验教学促进教研融合. 实验室研究与探索. 2020(08): 192-195 .

    Other cited types(0)

Catalog

    Article views (427) PDF downloads (851) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return