Citation: | WEI Naijie, WANG Guangji, ZHANG Jingwei. Advances in research on visualization of living cell drugs in vivo[J]. Journal of China Pharmaceutical University, 2022, 53(2): 156-163. DOI: 10.11665/j.issn.1000-5048.20220204 |
[1] |
. Nat Rev Drug Discov,2010,9(3):195-201.
|
[2] |
Upadhaya S,Yu JX,Shah M,et al. The clinical pipeline for cancer cell therapies[J]. Nat Rev Drug Discov,2021,20(7):503-504.
|
[3] |
Garfall AL,Maus MV,Hwang WT,et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma[J]. N Engl J Med,2015,373(11):1040-1047.
|
[4] |
Jiang YH,Jahagirdar BN,Reinhardt RL,et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature,2002,418(6893):41-49.
|
[5] |
Zhao YH,Gibb SL,Zhao J,et al. Wnt3a,a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury[J]. Stem Cells,2016,34(5):1263-1272.
|
[6] |
Lindvall O,Kokaia Z,Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work[J]. Nat Med,2004,10 Suppl:S42-S50.
|
[7] |
Nguyen PK,Rhee JW,Wu JC. Adult stem cell therapy and heart failure,2000 to 2016:a systematic review[J]. JAMA Cardiol,2016,1(7):831-841.
|
[8] |
Ortiz LA,Gambelli F,McBride C,et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci U S A,2003,100(14):8407-8411.
|
[9] |
Zhu YG,Feng XM,Abbott J,et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice[J]. Stem Cells,2014,32(1):116-125.
|
[10] |
Yuan XR,Qin XD,Wang DD,et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients[J]. Nat Commun,2019,10(1):2498.
|
[11] |
Liang J,Zhang H,Hua B,et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus:a pilot clinical study[J]. Ann Rheum Dis,2010,69(8):1423-1429.
|
[12] |
He YL,Guo XR,Lan TY,et al. Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat3 signaling[J]. Stem Cell Res Ther,2021,12(1):396.
|
[13] |
Wang LT,Wang JL,Liu HW,et al. Process in targeted contrast agents for cancer imaging[J]. J China Pharm Univ (中国药科大学学报),2017,48(6):635-645.
|
[14] |
Parente-Pereira AC,Burnet J,Ellison D,et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice[J]. J Clin Immunol,2011,31(4):710-718.
|
[15] |
Charoenphun P,Meszaros LK,Chuamsaamarkkee K,et al. [(89)zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography[J]. Eur J Nucl Med Mol Imaging,2015,42(2):278-287.
|
[16] |
Pittet MJ,Grimm J,Berger CR,et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy[J]. Proc Natl Acad Sci U S A,2007,104(30):12457-12461.
|
[17] |
Gholamrezanezhad A,Mirpour S,Bagheri M,et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol,2011,38(7):961-967.
|
[18] |
Minn I,Huss DJ,Ahn HH,et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography[J]. Sci Adv,2019,5(7):
|
[19] |
Emami-Shahri N,Foster J,Kashani R,et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells[J]. Nat Commun,2018,9(1):1081.
|
[20] |
Wei WJ,Rosenkrans ZT,Liu JJ,et al. ImmunoPET:concept,design,and applications[J]. Chem Rev,2020,120(8):3787-3851.
|
[21] |
Simonetta F,Alam IS,Lohmeyer JK,et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET[J]. Clin Cancer Res,2021,27(4):1058-1068.
|
[22] |
Jurgielewicz P,Harmsen S,Wei E,et al. New imaging probes to track cell fate:reporter genes in stem cell research[J]. Cell Mol Life Sci,2017,74(24):4455-4469.
|
[23] |
Jing BP,Qian RJ,Jiang DW,et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery[J]. J Nanobiotechnology,2021,19(1):151.
|
[24] |
Nejadnik H,Jung KO,Theruvath AJ,et al. Instant labeling of therapeutic cells for multimodality imaging[J]. Theranostics,2020,10(13):6024-6034.
|
[25] |
Mathiasen AB,Qayyum AA,J?rgensen E,et al. In vivo MRI tracking of mesenchymal stromal cells labeled with ultrasmall paramagnetic iron oxide particles after intramyocardial transplantation in patients with chronic ischemic heart disease[J]. Stem Cells Int,2019,2019:2754927.
|
[26] |
Xie T,Chen X,Fang JQ,et al. Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging[J]. Cytotherapy,2021,23(3):211-222.
|
[27] |
Egawa EY,Kitamura N,Nakai R,et al. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation[J]. Biomaterials,2015,54:158-167.
|
[28] |
Senders ML,Meerwaldt AE,van Leent MMT,et al. Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging[J]. Nat Nanotechnol,2020,15(5):398-405.
|
[29] |
Koshkina O,Lajoinie G,Bombelli FB,et al. Multicore liquid perfluorocarbon-loaded multimodal nanoparticles for stable ultrasound and 19F MRI applied to in vivo cell tracking[J]. Adv Funct Mater,2019,29(19):1806485.
|
[30] |
Li H,Luo D,Yuan CN,et al. Magnetic resonance imaging of PSMA-positive prostate cancer by a targeted and activatable Gd(III) MR contrast agent[J]. J Am Chem Soc,2021,143(41):17097-17108.
|
[31] |
Zhang MX,Liu XY,Huang J,et al. Ultrasmall graphene oxide based T 1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells[J]. Nanomedicine,2018,14(7):2475-2483.
|
[32] |
Hingorani DV,Chapelin F,Stares E,et al. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection[J]. Magn Reson Med,2020,83(3):974-987.
|
[33] |
Zheng B,Vazin T,Goodwill PW,et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast[J]. Scientific reports,2015,5:14055.
|
[34] |
Zheng B,See MPV,Yu E,et al. Quantitative magnetic particle imaging monitors the transplantation,biodistribution,and clearance of stem cells in vivo[J]. Theranostics,2016,6(3):291-301.
|
[35] |
Nejadnik H,Pandit P,Lenkov O,et al. Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells[J]. Mol Imaging Biol,2019,21(3):465-472.
|
[36] |
Wang QY,Ma XB,Liao HW,et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking[J]. ACS Nano,2020,14(2):2053-2062.
|
[37] |
Liu YL,Yang M,Zhang JP,et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy[J]. ACS Nano,2016,10(2):2375-2385.
|
[38] |
Betzer O,Shwartz A,Motiei M,et al. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain:application in neuropsychiatric disorders[J]. ACS Nano,2014,8(9):9274-9285.
|
[39] |
Betzer O,Meir R,Dreifuss T,et al. In-vitro optimization of nanoparticle-cell labeling protocols for in-vivo cell tracking applications[J]. Sci Rep,2015,5:15400.
|
[40] |
Yu CG,Chen ZJ,Li XD,et al. pH-triggered aggregation of gold nanoparticles for enhanced labeling and long-term CT imaging tracking of stem cells in pulmonary fibrosis treatment[J]. Small,2021,17(33):
|
[41] |
Wan DQ,Chen DX,Li KC,et al. Gold nanoparticles as a potential cellular probe for tracking of stem cells in bone regeneration using dual-energy computed tomography[J]. ACS Appl Mater Interfaces,2016,8(47):32241-32249.
|
[42] |
Meir R,Popovtzer R. Cell tracking using gold nanoparticles and computed tomography imaging[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2018,10(2):
|
[43] |
Chen GC,Tian F,Zhang Y,et al. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots[J]. Adv Funct Mater,2014,24(17):2481-2488.
|
[44] |
Yang YM,Chen J,Shang XL,et al. Visualizing the fate of intra-articular injected mesenchymal stem cells in vivo in the second near-infrared window for the effective treatment of supraspinatus tendon tears[J]. Adv Sci (Weinh),2019,6(19):1901018.
|
[45] |
Mazza M,Lozano N,Vieira DB,et al. Liposome-indocyanine green nanoprobes for optical labeling and tracking of human mesenchymal stem cells post-transplantation in vivo[J]. Adv Healthc Mater,2017,6(21):1700374.
|
[46] |
Yang CH,Ni X,Mao D,et al. Seeing the fate and mechanism of stem cells in treatment of ionizing radiation-induced injury using highly near-infrared emissive AIE dots[J]. Biomaterials,2019,188:107-117.
|
[47] |
Rabinovich BA,Ye Y,Etto T,et al. Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer[J]. Proc Natl Acad Sci U S A,2008,105(38):14342-14346.
|
[48] |
Santos EB,Yeh R,Lee J,et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase[J]. Nat Med,2009,15(3):338-344.
|
[49] |
Yin C,Wen GH,Liu C,et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window[J]. ACS Nano,2018,12(12):12201-12211.
|
[50] |
Kim T,Lemaster JE,Chen F,et al. Photoacoustic imaging of human mesenchymal stem cells labeled with Prussian blue-poly(L-lysine) nanocomplexes[J]. ACS Nano,2017,11(9):9022-9032.
|
[51] |
Donnelly EM,Kubelick KP,Dumani DS,et al. Photoacoustic image-guided delivery of plasmonic-nanoparticle-labeled mesenchymal stem cells to the spinal cord[J]. Nano Lett,2018,18(10):6625-6632.
|
[52] |
Dhada KS,Hernandez DS,Suggs LJ. In vivo photoacoustic tracking of mesenchymal stem cell viability[J]. ACS Nano,2019,13(7):7791-7799.
|
[53] |
Bao HY,Xia YY,Yu CG,et al. CT/bioluminescence dual-modal imaging tracking of mesenchymal stem cells in pulmonary fibrosis[J]. Small,2019,15(46):
|
[54] |
Harmsen S,Medine EI,Moroz M,et al. A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking[J]. Biomaterials,2021,269:120630.
|
[55] |
Hua SY,Zhong SH,Arami H,et al. Simultaneous deep tracking of stem cells by surface enhanced Raman imaging combined with single-cell tracking by NIR-II imaging in myocardial infarction[J]. Adv Funct Mater,2021,31(24):2100468.
|
[56] |
Lim S,Yoon HY,Jang HJ,et al. Dual-modal imaging-guided precise tracking of bioorthogonally labeled mesenchymal stem cells in mouse brain stroke[J]. ACS Nano,2019,13(10):10991-11007.
|
[57] |
Huang J,Huang J,Ning XY,et al. CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis[J]. J Mater Chem B,2020,8(8):1713-1727.
|
[58] |
Lee SM,Yoon HI,Na JH,et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface[J]. Biomaterials,2017,139:12-29.
|
[59] |
Cao J,Li X,Chang N,et al. Dual-modular molecular imaging to trace transplanted bone mesenchymal stromal cells in an acute myocardial infarction model[J]. Cytotherapy,2015,17(10):1365-1373.
|
[60] |
Filippi M,Garello F,Pasquino C,et al. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation[J]. J Biophotonics,2019,12(5):
|
[1] | XIE Jing, FAN Chunlin, XU Jie, ZHANG Jian, YE Wencai, ZHANG Xiaoqi. Alkaloids of Ervatamia pandacaqui[J]. Journal of China Pharmaceutical University, 2021, 52(3): 287-292. DOI: 10.11665/j.issn.1000-5048.20210304 |
[2] | LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506 |
[3] | LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607 |
[4] | HUANG Qilong, ZHANG Wanjin, LI Yan, CHEN Juan, ZHOU Baoping, ZOU Xiaohan, ZHANG Chunlei, CAO Zhengyu. Alkaloid constituents from Corydalis decumbens[J]. Journal of China Pharmaceutical University, 2017, 48(5): 563-567. DOI: 10.11665/j.issn.1000-5048.20170509 |
[5] | XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309 |
[6] | MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209 |
[7] | LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208 |
[8] | CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107 |
[9] | LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27. |
[10] | Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28. |