• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WEI Naijie, WANG Guangji, ZHANG Jingwei. Advances in research on visualization of living cell drugs in vivo[J]. Journal of China Pharmaceutical University, 2022, 53(2): 156-163. DOI: 10.11665/j.issn.1000-5048.20220204
Citation: WEI Naijie, WANG Guangji, ZHANG Jingwei. Advances in research on visualization of living cell drugs in vivo[J]. Journal of China Pharmaceutical University, 2022, 53(2): 156-163. DOI: 10.11665/j.issn.1000-5048.20220204

Advances in research on visualization of living cell drugs in vivo

Funds: This study was supported by the National Natural Science Foundation of China (No.82173887, 82073928)
More Information
  • Received Date: December 02, 2021
  • Revised Date: March 08, 2022
  • The development of living cell drugs and their successful application in clinical treatments require full clarification of the fate of cells after transplantation, which is critical to the safety and efficacy of living cell drugs.In order to solve this problem, cell imaging technology has come into our sight, and the use of visualization technology for non-invasive tracing of living cell drugs could reveal the distribution, homing and activity of living cell drugs in the body, which helps to determine the best number of transplanted cells, optimize the administration scheme, improve the transplantation efficiency, enhance the targeting of transplanted cells, and reduce the potential off-target accumulation risk.This paper summarizes the research advances of non-invasive visual tracing in vivo for living cell drugs from the perspectives of radionuclide imaging, magnetic resonance imaging, magnetic particle imaging, computed tomography imaging, fluorescence imaging and multimodal imaging.The aim is to obtain the biological behavior of living cell drugs in vivo with the application of appropriate contrast agent and tracing technology, and provide a more reasonable scientific basis for the research and development of living cell drugs and their transplantation therapy.
  • [1]
    . Nat Rev Drug Discov,2010,9(3):195-201.
    [2]
    Upadhaya S,Yu JX,Shah M,et al. The clinical pipeline for cancer cell therapies[J]. Nat Rev Drug Discov,2021,20(7):503-504.
    [3]
    Garfall AL,Maus MV,Hwang WT,et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma[J]. N Engl J Med,2015,373(11):1040-1047.
    [4]
    Jiang YH,Jahagirdar BN,Reinhardt RL,et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature,2002,418(6893):41-49.
    [5]
    Zhao YH,Gibb SL,Zhao J,et al. Wnt3a,a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury[J]. Stem Cells,2016,34(5):1263-1272.
    [6]
    Lindvall O,Kokaia Z,Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work[J]. Nat Med,2004,10 Suppl:S42-S50.
    [7]
    Nguyen PK,Rhee JW,Wu JC. Adult stem cell therapy and heart failure,2000 to 2016:a systematic review[J]. JAMA Cardiol,2016,1(7):831-841.
    [8]
    Ortiz LA,Gambelli F,McBride C,et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci U S A,2003,100(14):8407-8411.
    [9]
    Zhu YG,Feng XM,Abbott J,et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice[J]. Stem Cells,2014,32(1):116-125.
    [10]
    Yuan XR,Qin XD,Wang DD,et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients[J]. Nat Commun,2019,10(1):2498.
    [11]
    Liang J,Zhang H,Hua B,et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus:a pilot clinical study[J]. Ann Rheum Dis,2010,69(8):1423-1429.
    [12]
    He YL,Guo XR,Lan TY,et al. Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat3 signaling[J]. Stem Cell Res Ther,2021,12(1):396.
    [13]
    Wang LT,Wang JL,Liu HW,et al. Process in targeted contrast agents for cancer imaging[J]. J China Pharm Univ (中国药科大学学报),2017,48(6):635-645.
    [14]
    Parente-Pereira AC,Burnet J,Ellison D,et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice[J]. J Clin Immunol,2011,31(4):710-718.
    [15]
    Charoenphun P,Meszaros LK,Chuamsaamarkkee K,et al. [(89)zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography[J]. Eur J Nucl Med Mol Imaging,2015,42(2):278-287.
    [16]
    Pittet MJ,Grimm J,Berger CR,et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy[J]. Proc Natl Acad Sci U S A,2007,104(30):12457-12461.
    [17]
    Gholamrezanezhad A,Mirpour S,Bagheri M,et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol,2011,38(7):961-967.
    [18]
    Minn I,Huss DJ,Ahn HH,et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography[J]. Sci Adv,2019,5(7):eaaw5096.
    [19]
    Emami-Shahri N,Foster J,Kashani R,et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells[J]. Nat Commun,2018,9(1):1081.
    [20]
    Wei WJ,Rosenkrans ZT,Liu JJ,et al. ImmunoPET:concept,design,and applications[J]. Chem Rev,2020,120(8):3787-3851.
    [21]
    Simonetta F,Alam IS,Lohmeyer JK,et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET[J]. Clin Cancer Res,2021,27(4):1058-1068.
    [22]
    Jurgielewicz P,Harmsen S,Wei E,et al. New imaging probes to track cell fate:reporter genes in stem cell research[J]. Cell Mol Life Sci,2017,74(24):4455-4469.
    [23]
    Jing BP,Qian RJ,Jiang DW,et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery[J]. J Nanobiotechnology,2021,19(1):151.
    [24]
    Nejadnik H,Jung KO,Theruvath AJ,et al. Instant labeling of therapeutic cells for multimodality imaging[J]. Theranostics,2020,10(13):6024-6034.
    [25]
    Mathiasen AB,Qayyum AA,J?rgensen E,et al. In vivo MRI tracking of mesenchymal stromal cells labeled with ultrasmall paramagnetic iron oxide particles after intramyocardial transplantation in patients with chronic ischemic heart disease[J]. Stem Cells Int,2019,2019:2754927.
    [26]
    Xie T,Chen X,Fang JQ,et al. Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging[J]. Cytotherapy,2021,23(3):211-222.
    [27]
    Egawa EY,Kitamura N,Nakai R,et al. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation[J]. Biomaterials,2015,54:158-167.
    [28]
    Senders ML,Meerwaldt AE,van Leent MMT,et al. Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging[J]. Nat Nanotechnol,2020,15(5):398-405.
    [29]
    Koshkina O,Lajoinie G,Bombelli FB,et al. Multicore liquid perfluorocarbon-loaded multimodal nanoparticles for stable ultrasound and 19F MRI applied to in vivo cell tracking[J]. Adv Funct Mater,2019,29(19):1806485.
    [30]
    Li H,Luo D,Yuan CN,et al. Magnetic resonance imaging of PSMA-positive prostate cancer by a targeted and activatable Gd(III) MR contrast agent[J]. J Am Chem Soc,2021,143(41):17097-17108.
    [31]
    Zhang MX,Liu XY,Huang J,et al. Ultrasmall graphene oxide based T 1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells[J]. Nanomedicine,2018,14(7):2475-2483.
    [32]
    Hingorani DV,Chapelin F,Stares E,et al. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection[J]. Magn Reson Med,2020,83(3):974-987.
    [33]
    Zheng B,Vazin T,Goodwill PW,et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast[J]. Scientific reports,2015,5:14055.
    [34]
    Zheng B,See MPV,Yu E,et al. Quantitative magnetic particle imaging monitors the transplantation,biodistribution,and clearance of stem cells in vivo[J]. Theranostics,2016,6(3):291-301.
    [35]
    Nejadnik H,Pandit P,Lenkov O,et al. Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells[J]. Mol Imaging Biol,2019,21(3):465-472.
    [36]
    Wang QY,Ma XB,Liao HW,et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking[J]. ACS Nano,2020,14(2):2053-2062.
    [37]
    Liu YL,Yang M,Zhang JP,et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy[J]. ACS Nano,2016,10(2):2375-2385.
    [38]
    Betzer O,Shwartz A,Motiei M,et al. Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain:application in neuropsychiatric disorders[J]. ACS Nano,2014,8(9):9274-9285.
    [39]
    Betzer O,Meir R,Dreifuss T,et al. In-vitro optimization of nanoparticle-cell labeling protocols for in-vivo cell tracking applications[J]. Sci Rep,2015,5:15400.
    [40]
    Yu CG,Chen ZJ,Li XD,et al. pH-triggered aggregation of gold nanoparticles for enhanced labeling and long-term CT imaging tracking of stem cells in pulmonary fibrosis treatment[J]. Small,2021,17(33):e2101861.
    [41]
    Wan DQ,Chen DX,Li KC,et al. Gold nanoparticles as a potential cellular probe for tracking of stem cells in bone regeneration using dual-energy computed tomography[J]. ACS Appl Mater Interfaces,2016,8(47):32241-32249.
    [42]
    Meir R,Popovtzer R. Cell tracking using gold nanoparticles and computed tomography imaging[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2018,10(2):e1480.
    [43]
    Chen GC,Tian F,Zhang Y,et al. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots[J]. Adv Funct Mater,2014,24(17):2481-2488.
    [44]
    Yang YM,Chen J,Shang XL,et al. Visualizing the fate of intra-articular injected mesenchymal stem cells in vivo in the second near-infrared window for the effective treatment of supraspinatus tendon tears[J]. Adv Sci (Weinh),2019,6(19):1901018.
    [45]
    Mazza M,Lozano N,Vieira DB,et al. Liposome-indocyanine green nanoprobes for optical labeling and tracking of human mesenchymal stem cells post-transplantation in vivo[J]. Adv Healthc Mater,2017,6(21):1700374.
    [46]
    Yang CH,Ni X,Mao D,et al. Seeing the fate and mechanism of stem cells in treatment of ionizing radiation-induced injury using highly near-infrared emissive AIE dots[J]. Biomaterials,2019,188:107-117.
    [47]
    Rabinovich BA,Ye Y,Etto T,et al. Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer[J]. Proc Natl Acad Sci U S A,2008,105(38):14342-14346.
    [48]
    Santos EB,Yeh R,Lee J,et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase[J]. Nat Med,2009,15(3):338-344.
    [49]
    Yin C,Wen GH,Liu C,et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window[J]. ACS Nano,2018,12(12):12201-12211.
    [50]
    Kim T,Lemaster JE,Chen F,et al. Photoacoustic imaging of human mesenchymal stem cells labeled with Prussian blue-poly(L-lysine) nanocomplexes[J]. ACS Nano,2017,11(9):9022-9032.
    [51]
    Donnelly EM,Kubelick KP,Dumani DS,et al. Photoacoustic image-guided delivery of plasmonic-nanoparticle-labeled mesenchymal stem cells to the spinal cord[J]. Nano Lett,2018,18(10):6625-6632.
    [52]
    Dhada KS,Hernandez DS,Suggs LJ. In vivo photoacoustic tracking of mesenchymal stem cell viability[J]. ACS Nano,2019,13(7):7791-7799.
    [53]
    Bao HY,Xia YY,Yu CG,et al. CT/bioluminescence dual-modal imaging tracking of mesenchymal stem cells in pulmonary fibrosis[J]. Small,2019,15(46):e1904314.
    [54]
    Harmsen S,Medine EI,Moroz M,et al. A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking[J]. Biomaterials,2021,269:120630.
    [55]
    Hua SY,Zhong SH,Arami H,et al. Simultaneous deep tracking of stem cells by surface enhanced Raman imaging combined with single-cell tracking by NIR-II imaging in myocardial infarction[J]. Adv Funct Mater,2021,31(24):2100468.
    [56]
    Lim S,Yoon HY,Jang HJ,et al. Dual-modal imaging-guided precise tracking of bioorthogonally labeled mesenchymal stem cells in mouse brain stroke[J]. ACS Nano,2019,13(10):10991-11007.
    [57]
    Huang J,Huang J,Ning XY,et al. CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis[J]. J Mater Chem B,2020,8(8):1713-1727.
    [58]
    Lee SM,Yoon HI,Na JH,et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface[J]. Biomaterials,2017,139:12-29.
    [59]
    Cao J,Li X,Chang N,et al. Dual-modular molecular imaging to trace transplanted bone mesenchymal stromal cells in an acute myocardial infarction model[J]. Cytotherapy,2015,17(10):1365-1373.
    [60]
    Filippi M,Garello F,Pasquino C,et al. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation[J]. J Biophotonics,2019,12(5):e201800035.
  • Related Articles

    [1]XIE Jing, FAN Chunlin, XU Jie, ZHANG Jian, YE Wencai, ZHANG Xiaoqi. Alkaloids of Ervatamia pandacaqui[J]. Journal of China Pharmaceutical University, 2021, 52(3): 287-292. DOI: 10.11665/j.issn.1000-5048.20210304
    [2]LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506
    [3]LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607
    [4]HUANG Qilong, ZHANG Wanjin, LI Yan, CHEN Juan, ZHOU Baoping, ZOU Xiaohan, ZHANG Chunlei, CAO Zhengyu. Alkaloid constituents from Corydalis decumbens[J]. Journal of China Pharmaceutical University, 2017, 48(5): 563-567. DOI: 10.11665/j.issn.1000-5048.20170509
    [5]XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309
    [6]MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209
    [7]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [8]CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107
    [9]LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27.
    [10]Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28.

Catalog

    Article views (1278) PDF downloads (690) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return