Citation: | LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604 |
[1] |
. Nat Med,2011,17(12):1685?1691.
|
[2] |
Maruoka Y,Furusawa A,Okada R,et al. Combined CD44- and CD25-targeted near-infrared photoimmunotherapy selectively kills cancer and regulatory T cells in syngeneic mouse cancer models[J]. Cancer Immunol Res,2020,8(3):345?355.
|
[3] |
Sato K,Nagaya T,Mitsunaga M,et al. Near infrared photoimmunotherapy for lung metastases[J]. Cancer Lett,2015,365(1):112?121.
|
[4] |
Sato K,Nagaya T,Nakamura Y,et al. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model[J]. Oncotarget,2015,6(23):19747?19758.
|
[5] |
Kobayashi H,Choyke PL. Near-infrared photoimmunotherapy of cancer[J]. Acc Chem Res,2019,52(8):2332?2339.
|
[6] |
Zheng L,Tan W,Zhang J,et al. Combining trastuzumab and cetuximab combats trastuzumab-resistant gastric cancer by effective inhibition of EGFR/ErbB2 heterodimerization and signaling[J]. Cancer Immunol Immunother,2014,63(6):581?586.
|
[7] |
Boeckx C,Blockx L,de Beeck KO,et al. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines:focus on the contribution of the AP-1 transcription factor[J]. Am J Cancer Res,2015,5(6):1921?1938.
|
[8] |
Sano K,Nakajima T,Choyke PL,et al. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors[J]. ACS Nano,2013,7(1):717?724.
|
[9] |
Burley TA,Maczynska J,Shah A,et al. Near-infrared photoimmunotherapy targeting EGFR-shedding new light on glioblastoma treatment[J]. Int J Cancer,2018,142(11):2363?2374.
|
[10] |
Nishimura T,Mitsunaga M,Sawada R,et al. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody[J]. Cancer Med,2019,8(18):7781?7792.
|
[11] |
Kiss B,van den Berg NS,Ertsey R,et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer[J]. Clin Cancer Res,2019,25(12):3561?3571.
|
[12] |
Wei W,Jiang D,Ehlerding EB,et al. CD146-targeted multimodal image-guided photoimmunotherapy of melanoma[J]. Adv Sci (Weinh),2019,6(9):1801237.
|
[13] |
Isobe Y,Sato K,Nishinaga Y,et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer[J]. EBioMedicine,2020,52:102632.
|
[14] |
Sato K,Hanaoka H,Watanabe R,et al. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer[J]. Mol Cancer Ther,2015,14(1):141?150.
|
[15] |
Nagaya T,Okuyama S,Ogata F,et al. Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination[J]. Gastric Cancer,2019,22(3):463?472.
|
[16] |
Nagaya T,Okuyama S,Ogata F,et al. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody[J]. Oncotarget,2018,9(27):19026?19038.
|
[17] |
Kobayashi H,Griffiths GL,Choyke PL. Near-infrared photoimmunotherapy:photoactivatable antibody-drug conjugates (ADCs) [J]. Bioconjug Chem,2020,31(1):28?36.
|
[18] |
Li F,Zhao Y,Mao C,et al. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer[J]. Mol Pharm,2017,14(8):2793?2804.
|
[19] |
Perez HL,Cardarelli PM,Deshpande S,et al. Antibody-drug conjugates:current status and future directions[J]. Drug Discov Today,2014,19(7):869?881.
|
[20] |
Amoury M,Bauerschlag D,Zeppernick F,et al. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand[J]. Oncotarget,2016,7(34):54925?54936.
|
[21] |
Okuyama S,Nagaya T,Sato K,et al. Interstitial near-infrared photoimmunotherapy:effective treatment areas and light doses needed for use with fiber optic diffusers[J]. Oncotarget,2018,9(13):11159?11169.
|
[22] |
Nakajima T,Sato K,Hanaoka H,et al. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity[J]. BMC Cancer,2014,14:389.
|
[23] |
Sato K,Watanabe R,Hanaoka H,et al. Comparative effectiveness of light emitting diodes (LEDs) and lasers in near infrared photoimmunotherapy[J]. Oncotarget,2016,7(12):14324?14335.
|
[24] |
Peng W,de Bruijn HS,Farrell E,et al. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFR-targeted photoimmunotherapy in human head and neck cancer cell lines[J]. Lasers Surg Med,2018,50(5):513?522.
|
[25] |
Nagaya T,Sato K,Harada T,et al. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer:optimizing the conjugate-light regimen[J]. PLoS One,2015,10(8):
|
[26] |
Kishimoto S,Bernardo M,Saito K,et al. Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using IR-700-antibody conjugates[J]. Free Radic Biol Med,2015,85:24?32.
|
[27] |
van Lith SAM,van den Brand D,Wallbrecher R,et al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates[J]. Eur J Pharm Biopharm,2018,124:63?72.
|
[28] |
Mao C,Zhao Y,Li F,et al. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors[J]. J Control Release,2018,286:289?300.
|
[29] |
Nakamura Y,Nagaya T,Sato K,et al. Alterations of filopodia by near infrared photoimmunotherapy:evaluation with 3D low-coherent quantitative phase microscopy[J]. Biomed Opt Express,2016,7(7):2738?2748.
|
[30] |
Sano K,Mitsunaga M,Nakajima T,et al. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET[J]. J Nucl Med,2013,54(5):770?775.
|
[31] |
Ogata F,Nagaya T,Okuyama S,et al. Dynamic changes in the cell membrane on three dimensional low coherent quantitative phase microscopy (3D LC-QPM) after treatment with the near infrared photoimmunotherapy[J]. Oncotarget,2017,8(61):104295?104302.
|
[32] |
Nakajima K,Takakura H,Shimizu Y,et al. Changes in plasma membrane damage inducing cell death after treatment with near-infrared photoimmunotherapy[J]. Cancer Sci,2018,109(9):2889?2896.
|
[33] |
Sato K,Watanabe R,Hanaoka H,et al. Photoimmunotherapy:comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor[J]. Mol Oncol,2014,8(3):620?632.
|
[34] |
Sato K,Choyke PL,Kobayashi H. Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model[J]. PLoS One,2014,9(11):
|
[35] |
Kishimoto S,Oshima N,Yamamoto K,et al. Molecular imaging of tumor photoimmunotherapy:evidence of photosensitized tumor necrosis and hemodynamic changes[J]. Free Radic Biol Med,2018,116:1?10.
|
[36] |
Sato K,Ando K,Okuyama S,et al. Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies:a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy[J]. ACS Cent Sci,2018,4(11):1559?1569.
|
[37] |
Dong H,Wu R,Liu J,et al. Advances in cancer photodynamic therapy[J]. J China Pharm Univ(中国药科大学学报),2016,47(4):377?387.
|
[38] |
Isoda Y,Piao W,Taguchi E,et al. Development and evaluation of a novel antibody-photon absorber conjugate reveals the possibility of photoimmunotherapy-induced vascular occlusion during treatment in vivo[J]. Oncotarget,2018,9(59):31422?31431.
|
[39] |
Nagaya T,Okuyama S,Ogata F,et al. Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer[J]. Cancer Sci,2018,109(6):1902?1908.
|
[40] |
Maruoka Y,Nagaya T,Sato K,et al. Near infrared photoimmunotherapy with combined exposure of external and interstitial light sources[J]. Mol Pharm,2018,15(9):3634?3641.
|
[41] |
Nakajima K,Kimura T,Takakura H,et al. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy:device development and experimental assessment in vitro and in vivo[J]. Oncotarget,2018,9(28):20048?20057.
|
[42] |
Mitsunaga M,Nakajima T,Sano K,et al. Near-infrared theranostic photoimmunotherapy (PIT):repeated exposure of light enhances the effect of immunoconjugate[J]. Bioconjug Chem,2012,23(3):604?609.
|
[43] |
Mitsunaga M,Nakajima T,Sano K,et al. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy[J]. BMC Cancer,2012,12:345.
|
[44] |
Okuyama S,Nagaya T,Ogata F,et al. Avoiding thermal injury during near-infrared photoimmunotherapy (NIR-PIT):the importance of NIR light power density[J]. Oncotarget,2017,8(68):113194?113201.
|
[45] |
Nakajima T,Sano K,Mitsunaga M,et al. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging[J]. Cancer Res,2012,72(18):4622?4628.
|
[46] |
Maruoka Y,Nagaya T,Nakamura Y,et al. Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase-luciferin photon-counting and fluorescence imaging[J]. Mol Pharm,2017,14(12):4628?4635.
|
[1] | LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601 |
[2] | SUN Chenkai, CHEN Xin, CHENG Hao, ZHANG Xiangze, YANG Xiaoyu, ZHOU Jianping, DING Yang. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 387-397. DOI: 10.11665/j.issn.1000-5048.20210401 |
[3] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[4] | TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405 |
[5] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[6] | XU Xiangting, WANG Wei. Advances of functionalized carbon nanotubes in diagnosis and treatment of tumor[J]. Journal of China Pharmaceutical University, 2018, 49(2): 165-172. DOI: 10.11665/j.issn.1000-5048.20180205 |
[7] | CAI Han, LIU Yanhong, YIN Tingjie, ZHOU Jianping, HUO Meirong. Advances in the targeted therapy of tumor-associated fibroblasts[J]. Journal of China Pharmaceutical University, 2018, 49(1): 20-25. DOI: 10.11665/j.issn.1000-5048.20180103 |
[8] | WANG Letian, WANG Jinglin, LIU Hongwu, GE Ying, LI Yuyan, XU Qingxiang. Process in targeted contrast agents for cancer imaging[J]. Journal of China Pharmaceutical University, 2017, 48(6): 635-645. DOI: 10.11665/j.issn.1000-5048.20170602 |
[9] | DONG Hong, WU Ruixue, LIU Jiaqi, HUANG Qing, ZHOU Ya, HU Yiqiao. Advances in cancer photodynamic therapy[J]. Journal of China Pharmaceutical University, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401 |
[10] | HUANG Shaoliang, ZHAO Li, GUO Qinglong, WU Yulin. Advances of Hedgehog pathway in tumor resistance[J]. Journal of China Pharmaceutical University, 2016, 47(3): 259-266. DOI: 10.11665/j.issn.1000-5048.20160302 |
1. |
施薏,冯镜闻. 近红外光免疫治疗策略靶向肿瘤微环境的研究进展. 中国处方药. 2025(01): 104-107 .
![]() | |
2. |
徐欣瑶,赵丽娜,卢佳煜,张旭旭,郑春龙,李家贺,李玮,卢强. 食管癌中肿瘤相关成纤维细胞的异质性及靶向治疗. 重庆医科大学学报. 2024(12): 1550-1555 .
![]() |