Citation: | XU Xiangting, WANG Wei. Advances of functionalized carbon nanotubes in diagnosis and treatment of tumor[J]. Journal of China Pharmaceutical University, 2018, 49(2): 165-172. DOI: 10.11665/j.issn.1000-5048.20180205 |
[1] |
Zhang FR,Wang W.Advances of synthetic lipoproteins as drug nanovectors[J].J China Pharm Univ(中国药科大学学报),2016,47(2):148-157.
|
[2] |
Liu Y,Zhou JP,Wnag W.Advances in PEGylated targeted nano-preparation[J].J China Pharm Univ(中国药科大学),2017,48(3):268-275.
|
[3] |
Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
|
[4] |
Jafar END,Omidi Y,Losic D.Carbon nanotubes as an advanced drug and gene delivery nanosystem[J].Curr Nanosci,2011,1(7):297-314.
|
[5] |
Loh XJ,Lee TC,Dou Q,et al.Utilising inorganic nanocarriers for gene delivery[J].Biomater Sci,2015,4(1):70-86.
|
[6] |
Su YJ,Hu YH,Wang Y,et al.A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy[J].Biomaterials,2017,139:75-90.
|
[7] |
Ding XF,Su YJ,Wang C,et al.Synergistic suppression of tumor angiogenesis by co-delivering of VEGF targeted siRNA and candesartan mediated by functionalized carbon nanovectors[J].ACS Appl Mater Inter,2017,9(28):23353-23369.
|
[8] |
Singh RP,Sharma G,Sonali,et al.Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery[J].Mat Sc Eng C-Mater,2017,77:446-458.
|
[9] |
Versiani AF,Astigarraga RG,Rocha ESO,et al.Multi-walled carbon nanotubes functionalized with recombinant dengue virus 3 envelope proteins induce significant and specific immune responses in mice[J].J Nanobiotech,2017,15(1):26.
|
[10] |
Fernández VKA,Melguizo M,Gallarín CG,et al.Copper-catalyzed direct amination of the superficial graphenic domains of multi-walled carbon nanotubes[J].Catal Sci Technol,2017,7(15):3361-3374.
|
[11] |
Joshi M,Kumar P,Kumar R,et al.Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells[J].Mat Sc Eng C-Mater,2017,75:1376-1388.
|
[12] |
Balas M,Constanda S,Duma A,et al.Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin[J].Toxicol in Vitro,2016,37:189-200.
|
[13] |
Punetha VD,Rana S,Yoo HJ,et al.Functionalization of carbon nanomaterials for advanced polymer nanocomposites:a comparison study between CNT and graphene[J].Prog Polym Sci,2017,67:1-47.
|
[14] |
Qi XL,Rui Y,Fan YC,et al.Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo[J].Colloid Surface B,2015,133:314-322.
|
[15] |
Fahrenholtz CD,Hadimani M,King SB,et al.Targeting breast cancer with sugar-coated carbon nanotubes[J].Nanomedicine,2015,10(16):2481-2497.
|
[16] |
Mohammadi ZA,Aghamiri SF,Zarrabi A,et al.A comparative study on non-covalent functionalization of carbon nanotubes by chitosan and its derivatives for delivery of doxorubicin[J].Chem Phys Lett,2015,642:22-28.
|
[17] |
Caoduro C,Hervouet E,Girardthernier C,et al.Carbon nanotubes as gene carriers:focus on internalization pathways related to functionalization and properties[J].Acta Biomater,2016,49:36-44.
|
[18] |
Nia AH,Amini A,Taghavi S,et al.A facile Friedel-Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors[J].Int J Pharm,2016,502(1/2):125-137.
|
[19] |
Zhang B,Wang HF,Shen S,et al.Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor[J].Biomaterials,2016,79:46-55.
|
[20] |
Marangon I,Silva AAK,Guilbert T,et al.Tumor stiffening,a key determinant of tumor progression,is reversed by nanomaterial-induced photothermal therapy[J].Theranostics,2017,7(2):329-343.
|
[21] |
Sobhani Z,Behnam MA,Emami F,et al.Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes[J].Int J Nanomed,2017,12:4509-4517.
|
[22] |
Virani NA,Davis C,McKernan P,et al.Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer[J].Nanotechnology,2017,29(3):1-23.
|
[23] |
Zhang J,Yang SH,Ji XR,et al.Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J].J Am Coll Cardiol,2014,64(4):385-390.
|
[24] |
Li BB,Qin H,Yang SH,et al.In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens[J].Opt Express,2014,22(17):20130-20137.
|
[25] |
Ji Z,Ding WZ,Ye FH,et al.Shape-adapting thermoacoustic imaging system based on flexible multi-element transducer[J].Appl Phys Lett,2015,107(9):218101-218144.
|
[26] |
Xydeas T,Siegmann K,Sinkus R,et al.Magnetic resonance elastography of the breast:correlation of signal intensity data with viscoelastic properties[J].Invest Radio,2005,40(7):412-420.
|
[27] |
Rogowska J, Patel NA, Fujimoto JG, et al. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues[J].Heart,2004,90(5):556-562.
|
[28] |
Avti PK,Hu S,Favazza C,et al.Detection,mapping,and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy[J].PLoS One,2012,7(4):1-8.
|
[29] |
Zerda ADL,Liu Z,Bodapati S,et al.Ultra-high sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice[J].Nano Lett,2010,10(6):2168-2172.
|
[30] |
Kim JW,Galanzha EI,Shashkov EV,et al.Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J].Nat Nanotechnol,2009,4(10):688-694.
|
[31] |
Heller DA,Baik S,Eurell TE,et al.Single-walled carbon nanotube spectroscopy in live cells:towards long-term labels and optical sensors[J].Adv Mater,2010,17(23):2793-2799.
|
[32] |
Lamprecht C,Gierlinger N,Heister E,et al.Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique[J].J Phys-Condens Mat,2012,24(16):1-10.
|
[33] |
Kang JW,Nguyen FT,Lue N,et al.Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells[J].Nano Lett,2012,12(12):6170-6174.
|
[34] |
Smith BR,Zavaleta C,Rosenberg J,et al.High-resolution,serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model[J].Nano Today,2013,8(2):126-137.
|
[35] |
Chen Y,Young RJ,Macpherson JV,et al.Silver-decorated carbon nanotube networks as SERS substrates[J].J Raman Spectrosc,2011,42(6):1255-1262.
|
[36] |
Wang XJ,Wang C,Cheng L,et al.Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy [J].J Am Chem Soc,2012,134(17):7414-7422.
|
[37] |
Wei H,Bruns OT,Kaul MG,et al.Exceedingly small iron oxide nanoparticles as positive MRI contrast agents[J].Proc Natl Acad Sci U S A,2017,114(9):2325-2330.
|
[38] |
Rosenberg JT,Sellgren KL,Sachi-Kocher A,et al.Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure[J].Cytotherapy,2013,15(3):307-322.
|
[39] |
Hu F,Joshi HM,Dravid VP,et al.High-performance nanostructured MR contrast probes[J].Nanoscale,2010,2(10):1884-1891.
|
[40] |
Ghaghada KB,Starosolski ZA,Bhayana S,et al.Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta[J].Placenta,2017,57:60-70.
|
[41] |
Yan C,Chen C,Hou L,et al.Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging[J].J Drug Target,2017,25(2):163-171.
|
[42] |
Wang S,Zhang Q,Yang P,et al.Manganese oxide-coated carbon nanotubes as dual-modality lymph mapping agents for photothermal therapy of tumor metastasis[J].ACS Appl Mater Inter,2016,8(6):3736-3743.
|
[43] |
Al FA,Shaik AS,Al SB,et al.Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes[J].Nanomedicine,2016,11(1):31-46.
|
[44] |
Wang H,Wang J,Deng X,et al.Biodistribution of carbon single-wall carbon nanotubes in mice[J].J Nanosci Nanotechnol,2004,4(8):1019-1024.
|
[45] |
Liu Z,Cai W,He L,et al.In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice[J].Nat Nanotechnol,2006,2:47-52.
|
[46] |
Hong SY,Tobias G,Aljamal KT,et al.Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging[J].Nat Mater,2010,9(6):485-490.
|
[47] |
Deng XY,Yang ST,Nie HY,et al.A generally adoptable radiotracing method for tracking carbon nanotubes in animals[J].Nanotechno66logy,2008,19(7):1-6.
|
[1] | LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601 |
[2] | LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604 |
[3] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[4] | TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405 |
[5] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[6] | YANG Huizhen, MU Weiwei, LIU Yongjun, ZHANG Na. Research progress of drug delivery system based on black phosphorus in tumor diagnosis and treatment[J]. Journal of China Pharmaceutical University, 2020, 51(3): 270-276. DOI: 10.11665/j.issn.1000-5048.20200303 |
[7] | CAI Han, LIU Yanhong, YIN Tingjie, ZHOU Jianping, HUO Meirong. Advances in the targeted therapy of tumor-associated fibroblasts[J]. Journal of China Pharmaceutical University, 2018, 49(1): 20-25. DOI: 10.11665/j.issn.1000-5048.20180103 |
[8] | DONG Hong, WU Ruixue, LIU Jiaqi, HUANG Qing, ZHOU Ya, HU Yiqiao. Advances in cancer photodynamic therapy[J]. Journal of China Pharmaceutical University, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401 |
[9] | HUANG Shaoliang, ZHAO Li, GUO Qinglong, WU Yulin. Advances of Hedgehog pathway in tumor resistance[J]. Journal of China Pharmaceutical University, 2016, 47(3): 259-266. DOI: 10.11665/j.issn.1000-5048.20160302 |
[10] | SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106. |