• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WANG Letian, WANG Jinglin, LIU Hongwu, GE Ying, LI Yuyan, XU Qingxiang. Process in targeted contrast agents for cancer imaging[J]. Journal of China Pharmaceutical University, 2017, 48(6): 635-645. DOI: 10.11665/j.issn.1000-5048.20170602
Citation: WANG Letian, WANG Jinglin, LIU Hongwu, GE Ying, LI Yuyan, XU Qingxiang. Process in targeted contrast agents for cancer imaging[J]. Journal of China Pharmaceutical University, 2017, 48(6): 635-645. DOI: 10.11665/j.issn.1000-5048.20170602

Process in targeted contrast agents for cancer imaging

More Information
  • The application of medical imaging technology is playing an important role in diagnosis and treatment of cancer. In clinic, the most commonly used imaging technology to detect cancers are X-ray computed tomography, nuclide imaging, magnetic resonance imaging and near-infrared fluorescence imaging. Contrast agents could enhance imaging signals and increase the sensitivity and accuracy of cancer detection. Neverthness, most of clinically used contrast agents have problems such as short retention time and tumor targeting insufficient, which is not favorable to cancer detecting. So it is of great significance to develop tumor targeting contrast agents. Currently, targeting strategies are divided into three types: passive targeting, active targeting and activatable targeting. In this review, we conclude the recent progress and applications of tumor targeting contrast agents of different imaging modilities. Besides, the future development of tumor targeting contrast agents is also prospected.
  • [1]
    Wagner HN Jr,Conti PS.Advances in medical imaging for cancer diagnosis and treatment[J].Cancer,1991,67(4):1121-1128.
    [2]
    Weissleder R,Pittet MJ.Imaging in the era of molecular oncology[J].Nature,2008,452(7187):580-589.
    [3]
    Li X,Anton N,Zuber G,et al.Contrast agents for preclinical targeted X-ray imaging[J].Adv Drug Deliv Rev,2014,76:116-133.
    [4]
    Kobayashi H,Ogawa M,Alford R,et al.New strategies for fluorescent probe design in medical diagnostic imaging[J].Chem Rev,2010,110(5):2620-2640.
    [5]
    Luo S,Yang X,Shi C.Newly emerging theranostic agents for simultaneous cancertargeted imaging and therapy[J].Curr Med Chem,2016,23(5):483-497.
    [6]
    Bu L,Shen B,Cheng Z.Fluorescent imaging of cancerous tissues for targeted surgery[J].Adv Drug Deliv Rev,2014,76:21-38.
    [7]
    Lusic H, Grinstaff MW. X-Ray-computed tomography contrast agents[J].Chem Rev,2013,113(3):1641-1666.
    [8]
    Larush L,Magdassi S.Formation of near-infrared fluorescent nanoparticles for medical imaging[J].Nanomedicine,2017,6(2):233-240.
    [9]
    Lee SY,Jeon SI,Jung S,et al.Targeted multimodal imaging modalities[J].Adv Drug Deliv Rev,2014,76:60-78.
    [10]
    Owens EA, Henary M, El Fakhri G, et al. Tissue-specific near-infrared fluorescence imaging[J].Accounts Chem Res,2016,49(9):1731-1740.
    [11]
    Ishizawa T,Fukushima N,Shibahara J,et al.Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J].Cancer,2009,115(11):2491-2504.
    [12]
    Ishizawa T,Masuda K,Urano Y,et al.Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma[J].Ann Surg Oncol,2014,21(2):440-448.
    [13]
    Kaneko J,Inagaki Y,Ishizawa T,et al.Photodynamic therapy for human hepatoma-cell-line tumors utilizing biliary excretion properties of indocyanine green[J].J Gastroenterol,2014,49(1):110-116.
    [14]
    Kudo H,Ishizawa T,Tani K,et al.Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy[J].Surg Endosc,2014,28(8):2504-2508.
    [15]
    Lim C,Vibert E,Azoulay D,et al.Indocyanine green fluorescence imaging in the surgical management of liver cancers:current facts and future implications[J].J Visc Surg,2014,151(2):117-124.
    [16]
    Choi HS, Gibbs SL, Lee JH, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J].Nat Biotechnol,2013,31(2):148-153.
    [17]
    Kim E,Yang KS,Kohler RH,et al.Optimized near-IR fluorescent agents for in vivo imaging of Btk expression[J].Bioconjug Chem,2015,26(8):1513-1518.
    [18]
    Zeng C,Shang W,Wang K,et al.Intraoperative identification of liver cancer microfoci using a targeted near-infrared fluorescent probe for imaging-guided surgery[J].Sci Rep,2016,6:21959.
    [19]
    Zhang C,Liu T,Su Y,et al.A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging[J].Biomaterials,2010,31(25):6612-6617.
    [20]
    Wang Y,Liu T,Zhang E,et al.Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells[J].Biomaterials,2014,35(13):4116-4124.
    [21]
    Yang X,Shi C,Tong R,et al.Near IR heptamethine cyanine dye-mediated cancer imaging[J].Clin Cancer Res,2010,16(10):2833-2844.
    [22]
    Tan X, Luo S, Wang D, et al. A NIR heptamethine dye with intrinsic cancer targeting,imaging and photosensitizing properties[J].Biomaterials,2012,33(7):2230-2239.
    [23]
    Luo S,Tan X,Qi Q,et al.A multifunctional heptamethine near-infrared dye for cancer theranosis[J].Biomaterials,2013,34(9):2244-2251.
    [24]
    Xiong H,Kos P,Yan Y,et al.Activatable water-soluble probes enhance tumor imaging by responding to dysregulated PH and exhibiting high tumor-to-liver fluorescence emission contrast[J].Bioconjug Chem,2016,27(7):1737-1744.
    [25]
    Lee H,Kim J,Kim H,et al.A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer[J].Chem Commun(Camb),2014,50(56):7507-7510.
    [26]
    Anayama T,Nakajima T,Dunne M,et al.A novel minimally invasive technique to create a rabbit VX2 lung tumor model for nano-sized image contrast and interventional studies[J].PLoS ONE,2013,8(6):e67355.
    [27]
    Samei E,Saunders RS,Badea CT,et al.Micro-CT imaging of breast tumors in rodents using a liposomal,nanoparticle contrast agent[J].Int J Nanomed,2009,4:277-282.
    [28]
    Huang P,Bao L,Zhang C,et al.Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy[J].Biomaterials,2011,32(36):9796-9809.
    [29]
    Hainfeld JF,O′connor MJ,Dilmanian FA,et al.Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions[J].Br J Radiol,2011,84(1002):526-533.
    [30]
    Muthurajan T,Rammanohar P,Rajendran NP,et al.Evaluation of quercetin-gadolinium complex as an efficient positive contrast enhancer for magnetic resonance imaging[J].Rsc Adv,2015,5(106):64-70.
    [31]
    Antonelli A,Sfara C,Manuali E,et al.Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of mri contrast agents[J].Nanomedicine,2011,6(6):211-223.
    [32]
    Kurokawa H,Togami I,Tsunoda M,et al.Experimental study of fast and ultrafast T2-weighted imaging sequences using AMI-25 superparamagnetic iron oxide(SPIO)[J].Acta Med Okayama,2001,55(1):41-50.
    [33]
    Tanoura T,Bernas M,Darkazanli A,et al.MR lymphography with iron oxide compound AMI-227:studies in ferrets with filariasis[J].AJR Am J Roentgenol,1992,159(4):875-881.
    [34]
    Unterweger H,Subatzus D,Tietze R,et al.Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy[J].Int J Nanomedicine, 2015,10:6985-6996.
    [35]
    Yamashita T,Kitao A,Matsui O,et al.Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma[J].Hepatology,2014,60(5):1674-1685.
    [36]
    Zhang SJ,Rao SX,Chen CZ,et al.Comparative study of using Gd-eob-dtpa and Gd-dtpa as MR contrast agent for hepatic parenchyma and vessles enhacement in the same patient with cirrhosis[J].Radiol Practice(放射学实践),2014,29(7):814-817.
    [37]
    Narita M, Hatano E, Arizono S, et al. Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma[J].J Gastroenterol,2009,44(7):793-798.
    [38]
    Pais A,Degani H.Estrogen receptor-targeted contrast agents for molecular magnetic resonance imaging of breast cancer hormonal status[J].Front Oncol,2016,6:100.
    [39]
    Hsieh WJ,Liang CJ,Chieh JJ,et al.In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles[J].Int J Nanomedicine,2012,7:2833-2842.
    [40]
    Santra S,Jativa SD,Kaittanis C,et al.Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent[J].Acs Nano,2012,6(8):7281-7294.
    [41]
    Chrapko BE,Chrapko M,Nocuń A,et al.Role of 18F-FDG PET/CT in the diagnosis of inflammatory and infectious vascular disease[J].Nucl Med Rev Cent East Eur,2016,19(1):28-36.
    [42]
    Hua FC.The applications of 11C-MET PET in brain tumor[J].Int J Radiat Med Nucl Med(国际放射医学核医学杂志),2002,26(1):1-4.
    [43]
    Nedergaard MK,Kristoffersen K,Michaelsen SR,et al.The use of longitudinal 18F-FET MicroPET imaging to evaluate response to irinotecan in orthotopic human glioblastoma multiforme xenografts[J].PLoS ONE,2014,9(6):e100009.
    [44]
    Kaira K,Oriuchi N,Shimizu K,et al.Evaluation of thoracic tumors with 18F-FMT and 18F-FDG PET-CT:a clinicopathological study[J].Int J Cancer,2009,124(5):1152-1160.
    [45]
    Brogsitter C,Zöphel K,Kotzerke J.18F-choline, 11C-choline and 11C-acetate PET/CT:comparative analysis for imaging prostate cancer patients[J].Eur J Nucl Med Mol Imaging,2013,40(1):18-27.
    [46]
    Umbehr MH,Müntener M,Hany T,et al.The role of 11C-choline and 18F-fluorocholine positron emission tomography(PET)and PET/CT in prostate cancer:a systematic review and meta-analysis[J].Eur Urol,2013,64(1):106-117.
    [47]
    Hoeben BA, Troost EG, Span PN, et al. 18F-FLT pet during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome[J].J Nucl Med,2013,54(4):532-540.
    [48]
    He SM, Cao TY, Zhang YJ. Current development of estrogen receptor PET probe-16α-[18F] fluoro-17β-estradiol on molecular functional imaging[J].Oncoradiology(肿瘤影像学),2014,3:178-183.
    [49]
    Mankoff DA,Tewson TJ,Eary JF.Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer[F-18] -16 alpha-fluoroestradiol(FES)[J].Nucl Med Biol,1997,24(4):341-348.
    [50]
    Lei Z,Ning G,Li Q,et al.Dynamic PET and optical imaging and compartment modeling using a dual-labeled cyclic RGD peptide probe[J].Theranostics,2012,2(8):746-756.
    [51]
    Chen F,Hong H,Zhang Y,et al.In vivo tumor targeting and image-guided drug delivery with antibody-conjugated,radiolabeled mesoporous silica nanoparticles[J].ACS Nano,2013,7(10):9027-9039.
    [52]
    Kim YH,Jeon J,Hong SH,et al.Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125[J].Small,2011,7(14):2052-2060.
    [53]
    Mortensen LS,Buus S,Nordsmark M,et al.Identifying hypoxia in human tumors:a correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode[J].Acta Oncol,2010,49(7):934-940.
    [54]
    Lehtiö K,Oikonen V,Nyman S,et al.Quantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole([18F]FETNIM)and PET using the tumour to plasma ratio[J].Eur J Nucl Med Mol Imaging,2003,30(1):101-108.
    [55]
    Van LJ, Janssen MH, Ollers M, et al. PET imaging of hypoxia using [1818F]HX4:a phase I trial[J].Eur J Nucl Med Mol Imaging,2010,37(9):1663-1668.
    [56]
    Chang E,Liu H,Unterschemmann K,et al.18F-FAZAPET imaging response tracks the reoxygenation of tumors in mice upon treatment with the mitochondrial complex I inhibitor BAY 87-2243[J].Clin Cancer Res,2015,21(2):335-346.
    [57]
    Yang YJ,Ding JS.Progress in study of nitroimidazole as hypoxia imaging agents in tumor[J].Acta Pharm Sin(药学学报),2016,51(8):1227-1232.
  • Related Articles

    [1]SHI Min, YONG Qin, HE Yingna, HUANG Shiqin, ZHAO Xuan, YU Xian. Construction and in vivo evaluation of a thermosensitive hydrogel system loading with Pseudomonas aeruginosa DNA vaccine[J]. Journal of China Pharmaceutical University, 2021, 52(2): 186-194. DOI: 10.11665/j.issn.1000-5048.20210207
    [2]CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404
    [3]WANG Rui, WANG Yongmei, CAI Mingjun, KE Xuejia, WU Yue, CHONG Jun, CAO Rongyue. Pharmacological effects of anti-melanoma DC vaccine sensitized by fusion proteins of G3G6 and HST1[J]. Journal of China Pharmaceutical University, 2019, 50(2): 238-245. DOI: 10.11665/j.issn.1000-5048.20190216
    [4]HAN Xiu, QI Xiaole, WU Zhenghong. Advances in self-assemblied DNA nanocages as drug delivery systems[J]. Journal of China Pharmaceutical University, 2017, 48(6): 663-669. DOI: 10.11665/j.issn.1000-5048.20170605
    [5]ZHANG Zhiqing, WANG Fang, ZHOU Ting, ZHANG Guodong, WANG Xiufeng, LI Yunze. A DNA polyaptamer system as a targeted antitumor drug delivery[J]. Journal of China Pharmaceutical University, 2015, 46(4). DOI: 10.11665/j.issn.1000-5048.20150408
    [6]Formula optimization and transfection efficiency of polyethyleneimine/DNA complexes[J]. Journal of China Pharmaceutical University, 2010, 41(1): 40-44.
    [7]Study on the Flavonoids from Lonicera confusa DC.[J]. Journal of China Pharmaceutical University, 2004, (4): 9-12.
    [8]Applications of Au Nanoparticles Labeling Method in DNA-detection and the Technology of Genechip[J]. Journal of China Pharmaceutical University, 2003, (2): 88-93.
    [9]The Isoquinolones from Menispermum dauricum DC.[J]. Journal of China Pharmaceutical University, 2001, (2): 16-17.
    [10]Ptotoplast Transformation of Staphylococcal DNA[J]. Journal of China Pharmaceutical University, 1992, (4): 239-242.
  • Cited by

    Periodical cited type(3)

    1. 石敏,雍琴,何颖娜,黄仕琴,赵轩,余娴. 载铜绿假单胞菌DNA疫苗温敏水凝胶系统的构建及体内评价. 中国药科大学学报. 2021(02): 186-194 . 本站查看
    2. 雍琴,岳瀚勋,石敏,黄仕琴,赵轩,余娴. pH响应性PTEN/PLGA-(HE)_(10)-MAP纳米粒的构建及体外评价. 中国药科大学学报. 2021(03): 301-310 . 本站查看
    3. 冯旸,徐霄,莫然. 淋巴靶向药物递送系统在抗肿瘤转移治疗中的研究进展. 中国药科大学学报. 2020(04): 425-432 . 本站查看

    Other cited types(2)

Catalog

    Article views (989) PDF downloads (3485) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return