• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
HAN Xiu, QI Xiaole, WU Zhenghong. Advances in self-assemblied DNA nanocages as drug delivery systems[J]. Journal of China Pharmaceutical University, 2017, 48(6): 663-669. DOI: 10.11665/j.issn.1000-5048.20170605
Citation: HAN Xiu, QI Xiaole, WU Zhenghong. Advances in self-assemblied DNA nanocages as drug delivery systems[J]. Journal of China Pharmaceutical University, 2017, 48(6): 663-669. DOI: 10.11665/j.issn.1000-5048.20170605

Advances in self-assemblied DNA nanocages as drug delivery systems

More Information
  • DNA nanocages are nanoscale three-dimensional polyhedral structures formed by self-assembled oligonucleotide strands by base pairing. DNA nanocages, especially the tetrahedron DNA nanocages, were proved to be potential nanocarriers for drug delivery, due to their good stablility, high compatibility, intracellular ablility and hollow cavity for modification and drug loading. . In this paper, we reviewed the structural characteristics, synthetic methods and targeted modification of DNA nanocages, as well as their development and application in drug carriers, biological imaging, in vitro diagnosis and materials science.
  • [1]
    Zangabad PS,Karimi M,Mehdizadeh F,et al.Nanocaged platforms:modification,drug delivery and nanotoxicity.Opening synthetic cages to release the tiger[J].Nanoscale,2017:1356-1392.
    [2]
    Lee H,Lytton-Jean AK,Chen Y,et al.Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J].Nat Nanotechnol,2012,7(6):389-393.
    [3]
    Alves C,Iacovelli F,Falconi M,et al.A simple and fast semiautomatic procedure for the atomistic modeling of complex DNA polyhedra[J].J Chem Inf Model,2016,56(5):941-949.
    [4]
    Chandrasekaran AR,Levchenko O.DNA nanocages[J].Chem Mater,2016,28(16):5569-5581.
    [5]
    Li J,Fan C,Pei H,et al.Smart drug delivery nanocarriers with self-assembled DNA nanostructures[J].Adv Mater,2013,25(32):4386-4396.
    [6]
    Charoenphol P,Bermudez H.Aptamer-targeted DNA nanostructures for therapeutic delivery[J].Mol Pharm,2014,11(5):1721-1725.
    [7]
    Ge Z,Lin M,Wang P,et al.Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor[J].Anal Chem,2014,86(4):2124-2130.
    [8]
    Kim KR,Lee YD,Lee T,et al.Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron[J].Biomaterials,2013,34(21):5226-5235.
    [9]
    Peng Q,Shao XR,Xie J,et al.Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells[J].ACS Appl Mater Interfaces,2016,8(20):12733-12739.
    [10]
    Corbett SL,Sharma R,Davies AG,et al.Enhancement of RecA-mediated self-assembly in DNA nanostructures through basepair mismatches and single-strand nicks[J].Sci Rep,2017,7:41081.
    [11]
    Jin JO,Park H,Zhang W,et al.Modular delivery of CpG-incorporated lipid-DNA nanoparticles for spleen DC activation[J].Biomaterials,2017,115:81-89.
    [12]
    Li J,Song D,Wang L.Supramolecular polymer complexes based on specific molecular recognition:DNA and its synthetic mimics[J].Curr Org Chem,2015,19(11):971-981.
    [13]
    Samanta A,Banerjee S,Liu Y.DNA nanotechnology for nanophotonic applications[J].Nanoscale,2015,7(6):2210-2220.
    [14]
    Zhang C,He Y,Su M,et al.DNA self-assembly:from 2D to 3D[J].Faraday Discuss,2009,143:221-233.
    [15]
    Shen W,Liu Q,Ding B,et al.Facilitation of DNA self-assembly by relieving the torsional strains between building blocks[J].Org Biomol Chem,2017,15(2):465-469.
    [16]
    Son J,Lee J,Tandon A,et al.Assembly of a tile-based multilayered DNA nanostructure[J].Nanoscale,2015,7(15):6492-6497.
    [17]
    Zhang F,Jiang S,Li W,et al.Self-assembly of complex DNA tessellations by using low-symmetry multi-arm DNA tiles[J].Angew Chem Int Ed Engl,2016,55(31):8860-8863.
    [18]
    Schreck JS,Romano F,Zimmer MH,et al.Characterizing DNA star-tile-based nanostructures using a coarse-grained model[J].ACS Nano,2016,10(4):4236-4247.
    [19]
    Wang P,Wu S,Tian C,et al.Retrosynthetic analysis-guided breaking tile symmetry for the assembly of complex DNA nanostructures[J].J Am Chem Soc,2016,138(41):13579-13585.
    [20]
    Chandrasekaran AR,Pushpanathan M,Halvorsen K.Evolution of DNA origami scaffolds[J].Mater Lett,2016,170:221-224.
    [21]
    Taylor AI,Beuron F,Peak-Chew SY,et al.Nanostructures from synthetic genetic polymers[J].ChemBioChem,2016,17(12):1107-1110.
    [22]
    Wang P,Gaitanaros S,Lee S,et al.Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials[J].J Am Chem Soc,2016,138(24):7733-7740.
    [23]
    Pfeifer W,Saccà B.From nano to macro through hierarchical self-assembly:the DNA paradigm[J].ChemBioChem,2016,17(12):1063-1080.
    [24]
    Bhatia D,Mehtab S,Krishnan R,et al.Icosahedral DNA nanocapsules by modular assembly[J].Angew Chem Int Ed Engl,2009,48(23):4134-4137.
    [25]
    Xing S,Jiang D,Li F,et al.Constructing higher-order DNA nanoarchitectures with highly purified DNA nanocages[J].ACS Appl Mater Interfaces,2015,7(24):13174-13179.
    [26]
    Flory JD,Shinde S,Lin S,et al.PNA-peptide assembly in a 3D DNA nanocage at room temperature[J].J Am Chem Soc,2013,135(18):6985-6993.
    [27]
    Wu XR,Wu CW,Zhang C.Discrete DNA three-dimensional nanostructures:the synthesis and applications[J].Chin J Polym Sci,2017,35(1):1-24.
    [28]
    Bujold KE,Hsu JC,Sleiman HF.Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA[J].J Am Chem Soc,2016,138(42):14030-14038.
    [29]
    Brglez J,Nikolov P,Angelin A,et al.Designed intercalators for modification of DNA origami surface properties[J].Chemistry,2015,21(26):9440-9446.
    [30]
    Akkus SP,Tunc CU,Culha M.Lactose-modified DNA tile nanostructures as drug carriers[J].J Drug Target,2016,24(8):709-719.
    [31]
    Jiang D,England CG,Cai W.DNA nanomaterials for preclinical imaging and drug delivery[J].J Control Release,2016,239:27-38.
    [32]
    Liu Z,Tian C,Yu J,et al.Self-assembly of responsive multilayered DNA nanocages[J].J Am Chem Soc,2015,137(5):1730-1733.
    [33]
    Li J,Pei H,Zhu B,et al.Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J].ACS Nano,2011,5(11):8783-8789.
    [34]
    Zhang H,Gao XD.Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides[J].Mater Sci Eng C Mater Biol Appl,2017,70(Pt 2):935-946.
    [35]
    Cassinelli V,Oberleitner B,Sobotta J,et al.One-step formation of “chain-armor”-stabilized DNA nanostructures[J].Angew Chem Int Ed Engl,2015,54(27):7795-7798.
    [36]
    Li Z,Zhao B,Wang D,et al.DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids[J].ACS Appl Mater Interfaces,2014,6(20):17944-17953.
    [37]
    Juul S, Iacovelli F, Falconi M, et al. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage[J].ACS Nano,2013,7(11):9724-9734.
    [38]
    Liu X, Xu Y, Yu T, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines[J].Nano Lett,2012,12(8):4254-4259.
    [39]
    Zhao Z,Jacovetty EL,Liu Y,et al.Encapsulation of gold nanoparticles in a DNA origami cage[J].Angew Chem Int EdEngl,2011,50(9):2041-2044.
    [40]
    Zhang C,Li X,Tian C,et al.DNA nanocages swallow gold nanoparticles(AuNPs)to form AuNP@ DNA cage core-shell structures[J].ACS Nano,2014,8(2):1130-1135.
    [41]
    Kim KR,Kim HY,Lee YD,et al.Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs[J].J Control Release,2016,243:121-131.
    [42]
    Wang Y,You Z,Du J,et al.Self-assembled triangular DNA nanoparticles are an efficient system for gene delivery[J].J Control Release,2016,233:126-135.
    [43]
    Kohman RE,Cha SS,Man HY,et al.Light-triggered release of bioactive molecules from DNA nanostructures[J].Nano Lett,2016,16(4):2781-2785.
    [44]
    Zhao Z,Fu J,Dhakal S,et al.Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion[J].Nat Commun,2016,7:10619.
    [45]
    Keum JW,Ahn JH,Bermudez H.Design,assembly,and activity of antisense DNA nanostructures[J].Small,2011,7(24):3529-3535.
    [46]
    Fu J,Yang YR,Dhakal S,et al.Assembly of multienzyme complexes on DNA nanostructures[J].Nat Protoc,2016,11(11):2243-2273.
    [47]
    Pei H,Lu N,Wen Y,et al.A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing[J].Adv Mater,2010,22(42):4754-4758.
    [48]
    Bhatia D,Surana S,Chakraborty S,et al.A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging[J].Nat Commun,2011,2:339.
    [49]
    Walsh AS,Yin H,Erben CM,et al.DNA cage delivery to mammalian cells[J].ACS Nano,2011,5(7):5427-5432.
  • Related Articles

    [1]SU Haiying, WANG Yukun, LI Weisong, ZHOU Jianping, CHENG Hao. Advances in anti-Alzheimer’s disease nano drug delivery system based on pathogenic mechanism of ferroptosis[J]. Journal of China Pharmaceutical University, 2024, 55(5): 613-623. DOI: 10.11665/j.issn.1000-5048.2024040702
    [2]CHANG Yuan, MAGETA Mageta Samwel, LI Nibowen, TANG Yingqi, LI Huangjuan, QIAN Chenggen. Research advances in modulating microglia for intervening in Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(5): 603-612. DOI: 10.11665/j.issn.1000-5048.2024030201
    [3]LAN Aili, LIU Gang, WU Chaoran, LIAO Hong. Research progress of integrated stress response in central nervous system diseases[J]. Journal of China Pharmaceutical University, 2024, 55(2): 194-201. DOI: 10.11665/j.issn.1000-5048.2023112302
    [4]ZHAO Mengqi, LIAO Hong. Researches progress of the relationship between neuro-inflammation and cognitive function[J]. Journal of China Pharmaceutical University, 2019, 50(4): 497-504. DOI: 10.11665/j.issn.1000-5048.20190416
    [5]CHEN Suting, CHEN Song, GAO Xiangdong. Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein[J]. Journal of China Pharmaceutical University, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417
    [6]YU Haiyang, CHEN Song, XU Zheng, GAO Xiangdong, YAO Wenbing. Protective effect of fibroin peptides on Aβ25-35-induced injury in SH-SY5Y cells and its mechanism[J]. Journal of China Pharmaceutical University, 2017, 48(5): 609-613. DOI: 10.11665/j.issn.1000-5048.20170517
    [7]YAN Ruizuo, GUO Baojian, YU Pei, ZHANG Zaijun. Effect of rasagiline on neuroprotection and behavior improvement in MPTP-induced acute mouse model of Parkinson′s disease[J]. Journal of China Pharmaceutical University, 2016, 47(5): 603-608. DOI: 10.11665/j.issn.1000-5048.20160517
    [8]NI Jie, LIU Gaoxiang, LIAO Hong. Expression of p75 neurotrophin receptor and its role in drug development[J]. Journal of China Pharmaceutical University, 2015, 46(6): 751-756. DOI: 10.11665/j.issn.1000-5048.20150620
    [9]CHEN Mengfei, FANG Lei, CHEN Li. Design, synthesis and anti-Alzheimer′s disease activity of 5-akylaminomethyl substituted carbazole derivatives[J]. Journal of China Pharmaceutical University, 2015, 46(6): 647-652. DOI: 10.11665/j.issn.1000-5048.20150602
    [10]SHEN Kai, KOU Junping, YU Boyang. Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(5): 532-540. DOI: 10.11665/j.issn.1000-5048.20150503
  • Cited by

    Periodical cited type(6)

    1. 段盼盼,赵丽娟,吴姿,杨子妮,王燕清. 直接进样气相色谱法用于助悬剂中乙二醇二甘醇和三甘醇残留量测定方法研究. 实用医技杂志. 2024(04): 241-244 .
    2. 孔祥祥,李建兵,陈东,孙晨磊,王婷,孙云,臧金秋,宋蕾,梁野. 气相色谱法测定聚乙二醇200中乙二醇、二甘醇、三甘醇和四甘醇含量. 质量安全与检验检测. 2024(03): 6-9 .
    3. 黄丽梅,曹玉,戴震,仝立卿,张珂. GC法测定对乙酰氨基酚口服液体制剂辅料中乙二醇及二甘醇残留量. 云南化工. 2024(08): 124-127 .
    4. 杨军林,陈明学,田栋伟,尹艳艳,张二康,尤小龙,张健,程平言. GC-MS/MS法直接测定酱香型白酒中二乙二醇的含量. 食品科技. 2022(06): 303-309 .
    5. 郜淑晓,祝颂,赵恂,袁耀佐,宋敏,杭太俊,陆宇婷. 聚氧乙烯中乙二醇和二甘醇残留的HPLC和GC测定法比较研究. 药物分析杂志. 2020(10): 1820-1827 .
    6. 田嘉铭,于小红,王银月,王旭,王治宝,王金,卢金铭. 气相色谱法测定糖平煎复方中苍术酮含量. 神经药理学报. 2020(05): 14-17 .

    Other cited types(1)

Catalog

    Article views (1031) PDF downloads (2863) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return