• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703
Citation: SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703

Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response

Funds: This study was supported by the National Natural Science Foundation of China (No.81274113, No.81873028) and the Public Welfare Technology Application Research Project of Zhejiang Province (No.2016C33185)
More Information
  • Received Date: April 16, 2023
  • Revised Date: October 17, 2023
  • The aim of the present study was to investigate the effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the polarization of M1/M2 microglia/macrophages in rats with acute cerebral ischemia.Ultrahigh-speed centrifugation was employed to isolate and identify exosomes; a middle cerebral artery occlusion (MCAO) model was prepared in rats using the intraluminal filament technique; Longa scoring and corner tests were used to evaluate the neurological function of rats; 2, 3, 5-triphenyltetrazole chloride (TTC) staining was used to assess the infarct volume in rat brains; immunofluorescence double-labeling of CD16/32/Iba1 and CD206/Iba1 was performed to detect M1/M2 phenotypes of microglia/macrophages; RT-qPCR was employed to measure the mRNA expression of CD86, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), arginase-1 (Arg-1), interleukin-10 (IL-10), and transforming growth factor beta (TGF-β) in the ischemic penumbra of rat brains.The experimental results showed that BMSC-Exos reduced the number of CD16/32+/Iba1+ positive cells in the ischemic penumbra (P < 0.01) while increasing the number of CD206+/Iba1+positive cells (P < 0.01), and decreased the mRNA expression of iNOS, CD86, and TNF-α, while increasing the mRNA expression of Arg-1, TGF-β, and IL-10 (P < 0.05 or P < 0.01).This research suggests that BMSC-Exos can regulate M1/M2 polarization of microglia/macrophages in rats with acute cerebral ischemia, alleviate neuroinflammation, and improve ischemic brain injury.
  • [1]
    Wang LD,Peng Bin, Zhang Hongqi, et al. Brief report on stroke prevention and treatment in China, 2020[J]. Chin J Cerebrovasc Dis (中国脑血管病杂志), 2022, 19(2): 136-144.
    [2]
    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67(2): 181-198.
    [3]
    Fan WX. Research progress on the mechanism of ischemic stroke[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(6): 751-759.
    [4]
    Venkat P, Shen Y, Chopp M, et al. Cell-based and pharmacological neurorestorative therapies for ischemic stroke[J]. Neuropharmacology, 2018, 134(Pt B): 310-322.
    [5]
    Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367-402.
    [6]
    Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
    [7]
    Wang ML, Pan W, Xu Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094.
    [8]
    Kuroda S. Current opinion of bone marrow stromal cell transplantation for ischemic stroke[J]. Neurol Med Chir, 2016, 56(6): 293-301.
    [9]
    Liu ZQ, Li X, Ye ZX, et al. Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis[J]. Biochem Biophys Res Commun, 2022, 593: 13-19.
    [10]
    Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Res Ther, 2016, 7(1): 125.
    [11]
    Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
    [12]
    Oveili E, Vafaei S, Bazavar H, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases[J]. Cell Commun Signal, 2023, 21(1): 20.
    [13]
    Hu H, Hu XW, Li L, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of miR-21-5p[J]. Biomolecules, 2022, 12(7): 883.
    [14]
    Li L, Chu LS, Fang Y, et al. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats[J]. Stem Cell Res Ther, 2017, 8(1): 112.
    [15]
    Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
    [16]
    Niu QF, Yang Y, Li DL, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate ischemia-reperfusion injury and promote survival of skin flaps in rats[J]. Life, 2022, 12(10): 1567.
    [17]
    Zheng JL, Zhang XJ, Cai WF, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16[J]. Cardiovasc Toxicol, 2022, 22(8): 689-700.
    [18]
    Liu XY, Wu CH, Zhang YS, et al. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis[J]. Carbohydr Polym, 2023, 306: 120578.
    [19]
    Gaire BP. Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia[J]. Cell Mol Neurobiol, 2022, 42(8): 2505-2525.
    [20]
    Price CJ, Wang DC, Menon DK, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke[J]. Stroke, 2006, 37(7): 1749-1753.
    [21]
    Gulyás B, Tóth M, Schain M, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11)) C]vinpocetine[J]. J Neurol Sci, 2012, 320(1/2): 110-117.
    [22]
    Hu XM, Li PY, Guo YL, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070.
    [23]
    Bai XJ, Hao L, Guo YE, et al. Bone marrow stromal cells reverse the microglia type from pro-inflammatory tumour necrosis factor a microglia to anti-inflammatory CD206 microglia of middle cerebral artery occlusion rats through triggering secretion of CX3CL1[J]. Folia Neuropathol, 2021, 59(1): 20-31.
    [24]
    Yang Y, Bao HY, Jin HQ, et al. Bone marrow-derived mesenchymal stem cells promote microglia/macrophage M2 polarization and enhance neurogenesis in the acute and chronic stages after ischemic stroke[J]. Clin Complementary Med Pharmacol, 2022, 2(4): 100040.
    [25]
    Liu YY, Li Y, Wang L, et al. Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury[J]. Neural Regen Res, 2023, 18(8): 1657-1665.
    [26]
    Wang YW, Wang XY, Zou ZH, et al. Conditioned medium from bone marrow mesenchymal stem cells relieves spinal cord injury through suppression of Gal-3/NLRP3 and M1 microglia/macrophage polarization[J]. Pathol Res Pract, 2023, 243: 154331.
    [27]
    Wen L, Wang YD, Shen DF, et al. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury[J]. Neural Regen Res, 2022, 17(12): 2717-2724.
  • Related Articles

    [1]WU Lingxi, DU Yixuan, GAO Xiangdong. Inhibitory effect of IL-27 on the overactivation of microglia[J]. Journal of China Pharmaceutical University, 2024, 55(6): 801-808. DOI: 10.11665/j.issn.1000-5048.2024022702
    [2]CHANG Yuan, MAGETA Mageta Samwel, LI Nibowen, TANG Yingqi, LI Huangjuan, QIAN Chenggen. Research advances in modulating microglia for intervening in Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(5): 603-612. DOI: 10.11665/j.issn.1000-5048.2024030201
    [3]YANG Jingwen, CHEN Qian, SHAN Yunlong, LIU Jiali, WEI Ning, WANG Jing, WANG Guangji, ZHOU Fang. Research progress on mesenchymal stem cell products and their exosomes in the treatment of inflammatory bowel disease[J]. Journal of China Pharmaceutical University, 2024, 55(1): 103-114. DOI: 10.11665/j.issn.1000-5048.2023113001
    [4]ZHANG Heng, CHEN Qianqian, GUI Yanping, HUANG Min, GUO Yabing, ZHAO Li. Mechanism of M2 macrophage-derived exosomes in promoting the migration of glioblastoma via transferring miR-1260b[J]. Journal of China Pharmaceutical University, 2023, 54(1): 95-106. DOI: 10.11665/j.issn.1000-5048.2023020901
    [5]CHU Xuxin, BU Fanxue, YIN Tingjie, HUO Meirong. Antitumor strategies based on targeted modulation of tumor-associated macrophages[J]. Journal of China Pharmaceutical University, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301
    [6]FAN Yixin, LIU Haijiao, LI Yixuan, ZHANG Yan, LIU Wentao, ZHANG Guangqin. Quercetin ameliorates postoperative pain by suppressing matrix metalloproteinase in microglia[J]. Journal of China Pharmaceutical University, 2017, 48(3): 343-347. DOI: 10.11665/j.issn.1000-5048.20170315
    [7]CHEN Lu, LI Jiajie, PAN Cailong, ZHOU Danli, LIU Wentao, ZHANG Guangqin. Tetramethylpyrazine attenuates morphine tolerance through suppressing spinal microglia activation in mice[J]. Journal of China Pharmaceutical University, 2015, 46(2): 230-234. DOI: 10.11665/j.issn.1000-5048.20150216
    [8]SONG Huayuan, ZHOU Danli, HAN Yuan, LIU Wentao. Baicalin attenuates morphine tolerance through suppressing spinal microglia activation in mice[J]. Journal of China Pharmaceutical University, 2014, 45(3): 346-351. DOI: 10.11665/j.issn.1000-5048.20140317
    [9]Co m parison of Specific Receptor Binding Assay and Fluores cence Polarization Im m unoassay in Monitoring of Blood Cyclosporine A[J]. Journal of China Pharmaceutical University, 1999, (4): 42-44.
    [10]APPLICATION OF POLARIZATION TRANSFER TECHNIQUE INEPT, DEPT AND QUATERNARY CARBON PULSE SEQUENCE IN ~(13)CNMR DETERMINATION[J]. Journal of China Pharmaceutical University, 1988, (2): 149-153.
  • Cited by

    Periodical cited type(3)

    1. 秦启顺,王兴盛,秦启发,徐世红,彭培,党泽亮,姜登宸. 微囊泡在创伤修复中的作用机制和应用. 生命的化学. 2025(02): 242-251 .
    2. 王斯柔,张谦,赵国建,张梦杰,黄志华. M2小胶质细胞在缺血性脑卒中的作用及干预的研究进展. 中国药理学通报. 2025(03): 411-416 .
    3. 刘恩旭,聂颖,段嘉豪,孙飞,孙钰,杨少锋,杨雷. 黄芪甲苷联合BMSCs-Exos对PC12细胞铁死亡的影响. 中草药. 2024(23): 8056-8066 .

    Other cited types(1)

Catalog

    Article views (534) PDF downloads (292) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return