• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703
Citation: SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703

Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response

Funds: This study was supported by the National Natural Science Foundation of China (No.81274113, No.81873028) and the Public Welfare Technology Application Research Project of Zhejiang Province (No.2016C33185)
More Information
  • Received Date: April 16, 2023
  • Revised Date: October 17, 2023
  • The aim of the present study was to investigate the effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the polarization of M1/M2 microglia/macrophages in rats with acute cerebral ischemia.Ultrahigh-speed centrifugation was employed to isolate and identify exosomes; a middle cerebral artery occlusion (MCAO) model was prepared in rats using the intraluminal filament technique; Longa scoring and corner tests were used to evaluate the neurological function of rats; 2, 3, 5-triphenyltetrazole chloride (TTC) staining was used to assess the infarct volume in rat brains; immunofluorescence double-labeling of CD16/32/Iba1 and CD206/Iba1 was performed to detect M1/M2 phenotypes of microglia/macrophages; RT-qPCR was employed to measure the mRNA expression of CD86, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), arginase-1 (Arg-1), interleukin-10 (IL-10), and transforming growth factor beta (TGF-β) in the ischemic penumbra of rat brains.The experimental results showed that BMSC-Exos reduced the number of CD16/32+/Iba1+ positive cells in the ischemic penumbra (P < 0.01) while increasing the number of CD206+/Iba1+positive cells (P < 0.01), and decreased the mRNA expression of iNOS, CD86, and TNF-α, while increasing the mRNA expression of Arg-1, TGF-β, and IL-10 (P < 0.05 or P < 0.01).This research suggests that BMSC-Exos can regulate M1/M2 polarization of microglia/macrophages in rats with acute cerebral ischemia, alleviate neuroinflammation, and improve ischemic brain injury.
  • [1]
    Wang LD,Peng Bin, Zhang Hongqi, et al. Brief report on stroke prevention and treatment in China, 2020[J]. Chin J Cerebrovasc Dis (中国脑血管病杂志), 2022, 19(2): 136-144.
    [2]
    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67(2): 181-198.
    [3]
    Fan WX. Research progress on the mechanism of ischemic stroke[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(6): 751-759.
    [4]
    Venkat P, Shen Y, Chopp M, et al. Cell-based and pharmacological neurorestorative therapies for ischemic stroke[J]. Neuropharmacology, 2018, 134(Pt B): 310-322.
    [5]
    Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367-402.
    [6]
    Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
    [7]
    Wang ML, Pan W, Xu Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094.
    [8]
    Kuroda S. Current opinion of bone marrow stromal cell transplantation for ischemic stroke[J]. Neurol Med Chir, 2016, 56(6): 293-301.
    [9]
    Liu ZQ, Li X, Ye ZX, et al. Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis[J]. Biochem Biophys Res Commun, 2022, 593: 13-19.
    [10]
    Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Res Ther, 2016, 7(1): 125.
    [11]
    Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
    [12]
    Oveili E, Vafaei S, Bazavar H, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases[J]. Cell Commun Signal, 2023, 21(1): 20.
    [13]
    Hu H, Hu XW, Li L, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of miR-21-5p[J]. Biomolecules, 2022, 12(7): 883.
    [14]
    Li L, Chu LS, Fang Y, et al. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats[J]. Stem Cell Res Ther, 2017, 8(1): 112.
    [15]
    Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
    [16]
    Niu QF, Yang Y, Li DL, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate ischemia-reperfusion injury and promote survival of skin flaps in rats[J]. Life, 2022, 12(10): 1567.
    [17]
    Zheng JL, Zhang XJ, Cai WF, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16[J]. Cardiovasc Toxicol, 2022, 22(8): 689-700.
    [18]
    Liu XY, Wu CH, Zhang YS, et al. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis[J]. Carbohydr Polym, 2023, 306: 120578.
    [19]
    Gaire BP. Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia[J]. Cell Mol Neurobiol, 2022, 42(8): 2505-2525.
    [20]
    Price CJ, Wang DC, Menon DK, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke[J]. Stroke, 2006, 37(7): 1749-1753.
    [21]
    Gulyás B, Tóth M, Schain M, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11)) C]vinpocetine[J]. J Neurol Sci, 2012, 320(1/2): 110-117.
    [22]
    Hu XM, Li PY, Guo YL, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070.
    [23]
    Bai XJ, Hao L, Guo YE, et al. Bone marrow stromal cells reverse the microglia type from pro-inflammatory tumour necrosis factor a microglia to anti-inflammatory CD206 microglia of middle cerebral artery occlusion rats through triggering secretion of CX3CL1[J]. Folia Neuropathol, 2021, 59(1): 20-31.
    [24]
    Yang Y, Bao HY, Jin HQ, et al. Bone marrow-derived mesenchymal stem cells promote microglia/macrophage M2 polarization and enhance neurogenesis in the acute and chronic stages after ischemic stroke[J]. Clin Complementary Med Pharmacol, 2022, 2(4): 100040.
    [25]
    Liu YY, Li Y, Wang L, et al. Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury[J]. Neural Regen Res, 2023, 18(8): 1657-1665.
    [26]
    Wang YW, Wang XY, Zou ZH, et al. Conditioned medium from bone marrow mesenchymal stem cells relieves spinal cord injury through suppression of Gal-3/NLRP3 and M1 microglia/macrophage polarization[J]. Pathol Res Pract, 2023, 243: 154331.
    [27]
    Wen L, Wang YD, Shen DF, et al. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury[J]. Neural Regen Res, 2022, 17(12): 2717-2724.
  • Related Articles

    [1]JIANG Yun, LEI Yajuan, XIE Yingying, SHI Rong, LIU Yanming. Screening of 12 elemental impurities in pharmaceutical excipient grades of titanium dioxide from various sources and their correlations with whiteness[J]. Journal of China Pharmaceutical University, 2024, 55(6): 750-757. DOI: 10.11665/j.issn.1000-5048.2023122803
    [2]WANG Huijian, WANG Yanfei, SU Wei, FU Qiang. Effects of pharmaceutical excipients on drug supersaturation in amorphous solid dispersions[J]. Journal of China Pharmaceutical University, 2024, 55(6): 725-733. DOI: 10.11665/j.issn.1000-5048.2023123001
    [3]LIU Juan, PANG Yuecheng, CHEN Yanmin, ZUO Shuhang, GAO Yongji. Determination of the content of pregabalin gastric retention sustained- release tablets and influence of high viscosity excipients on the determination results[J]. Journal of China Pharmaceutical University, 2024, 55(4): 478-484. DOI: 10.11665/j.issn.1000-5048.2023031302
    [4]LIU Wenxin, LI Yan, YUAN Yaozuo, JIA Huanhuan, CHEN Minhui, ZHANG Jinlin. Analysis of the causes for abnormal dissolution of lansoprazole enteric-coated tablets by multiple techniques and different dimensions[J]. Journal of China Pharmaceutical University, 2024, 55(2): 224-229. DOI: 10.11665/j.issn.1000-5048.2023052401
    [5]SUN Chunmeng, CHEN Lei, LI Yanan, SONG Zonghua, YANG Zhaopeng, TU Jiasheng. Interpretation of the Guideline for Pharmaceutical Excipients of Animal Origin[J]. Journal of China Pharmaceutical University, 2022, 53(3): 376-382. DOI: 10.11665/j.issn.1000-5048.20220316
    [6]MENG Yue, ZHANG Ziqiang, HE Shuwang, YAO Jing. Advances in research on pediatric oral liquid dosage forms[J]. Journal of China Pharmaceutical University, 2021, 52(1): 113-121. DOI: 10.11665/j.issn.1000-5048.20210116
    [7]SU Shina, LYU Zhufen, LIANG Chaofeng, LU Kewei, HUANG Yunran, CHEN Yanzhong. Advances of new excipients and technique in colon-specific preparations[J]. Journal of China Pharmaceutical University, 2017, 48(2): 242-250. DOI: 10.11665/j.issn.1000-5048.20170217
    [8]Molecular Interaction in Solvents Between Water Insoluble Drug Nitrazepam and Pharmaceutical Excipients[J]. Journal of China Pharmaceutical University, 1998, (6): 408-412.
    [9]INVESTIGATION OF THE INFLUENCE OF EXCIPIENTS ON THE STABILITY OF SODIUM OXACILLIN BY PYROLYSIS GAS CHROMATOGRAPHY[J]. Journal of China Pharmaceutical University, 1989, (1): 10-12.
    [10]Zheng Liangyuan, Ping Qineng, Liu Guojie, Tu Xide. THE EFFECTS OF SOME EXCIPIENTS ON THE ABSORPTION OF TETRACYCLINE[J]. Journal of China Pharmaceutical University, 1982, (2): 51-57.
  • Cited by

    Periodical cited type(1)

    1. 李长青,辛林峰,秦琴,黄慧梅,倪慧,李佳乐,张琳. 剪切DR3第10外显子促进乳腺癌MDA-MB-231细胞株增殖. 华夏医学. 2024(03): 41-47 .

    Other cited types(0)

Catalog

    Article views (117) PDF downloads (288) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return