Citation: | SUN Yimei, MAO Shihui, LI Lin, JIANG Weifeng, CHU Lisheng. Bone marrow mesenchymal stem cell-derived exosomes promote microglia/macrophage M2 polarization in acute cerebral ischemia rats and inhibit inflammatory response[J]. Journal of China Pharmaceutical University, 2023, 54(5): 599-606. DOI: 10.11665/j.issn.1000-5048.2023041703 |
[1] |
Wang LD,Peng Bin, Zhang Hongqi, et al. Brief report on stroke prevention and treatment in China, 2020[J]. Chin J Cerebrovasc Dis (中国脑血管病杂志), 2022, 19(2): 136-144.
|
[2] |
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67(2): 181-198.
|
[3] |
Fan WX. Research progress on the mechanism of ischemic stroke[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(6): 751-759.
|
[4] |
Venkat P, Shen Y, Chopp M, et al. Cell-based and pharmacological neurorestorative therapies for ischemic stroke[J]. Neuropharmacology, 2018, 134(
|
[5] |
Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367-402.
|
[6] |
Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
|
[7] |
Wang ML, Pan W, Xu Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094.
|
[8] |
Kuroda S. Current opinion of bone marrow stromal cell transplantation for ischemic stroke[J]. Neurol Med Chir, 2016, 56(6): 293-301.
|
[9] |
Liu ZQ, Li X, Ye ZX, et al. Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis[J]. Biochem Biophys Res Commun, 2022, 593: 13-19.
|
[10] |
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Res Ther, 2016, 7(1): 125.
|
[11] |
Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
|
[12] |
Oveili E, Vafaei S, Bazavar H, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases[J]. Cell Commun Signal, 2023, 21(1): 20.
|
[13] |
Hu H, Hu XW, Li L, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of miR-21-5p[J]. Biomolecules, 2022, 12(7): 883.
|
[14] |
Li L, Chu LS, Fang Y, et al. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats[J]. Stem Cell Res Ther, 2017, 8(1): 112.
|
[15] |
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
|
[16] |
Niu QF, Yang Y, Li DL, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate ischemia-reperfusion injury and promote survival of skin flaps in rats[J]. Life, 2022, 12(10): 1567.
|
[17] |
Zheng JL, Zhang XJ, Cai WF, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16[J]. Cardiovasc Toxicol, 2022, 22(8): 689-700.
|
[18] |
Liu XY, Wu CH, Zhang YS, et al. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis[J]. Carbohydr Polym, 2023, 306: 120578.
|
[19] |
Gaire BP. Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia[J]. Cell Mol Neurobiol, 2022, 42(8): 2505-2525.
|
[20] |
Price CJ, Wang DC, Menon DK, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke[J]. Stroke, 2006, 37(7): 1749-1753.
|
[21] |
Gulyás B, Tóth M, Schain M, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11)) C]vinpocetine[J]. J Neurol Sci, 2012, 320(1/2): 110-117.
|
[22] |
Hu XM, Li PY, Guo YL, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070.
|
[23] |
Bai XJ, Hao L, Guo YE, et al. Bone marrow stromal cells reverse the microglia type from pro-inflammatory tumour necrosis factor a microglia to anti-inflammatory CD206 microglia of middle cerebral artery occlusion rats through triggering secretion of CX3CL1[J]. Folia Neuropathol, 2021, 59(1): 20-31.
|
[24] |
Yang Y, Bao HY, Jin HQ, et al. Bone marrow-derived mesenchymal stem cells promote microglia/macrophage M2 polarization and enhance neurogenesis in the acute and chronic stages after ischemic stroke[J]. Clin Complementary Med Pharmacol, 2022, 2(4): 100040.
|
[25] |
Liu YY, Li Y, Wang L, et al. Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury[J]. Neural Regen Res, 2023, 18(8): 1657-1665.
|
[26] |
Wang YW, Wang XY, Zou ZH, et al. Conditioned medium from bone marrow mesenchymal stem cells relieves spinal cord injury through suppression of Gal-3/NLRP3 and M1 microglia/macrophage polarization[J]. Pathol Res Pract, 2023, 243: 154331.
|
[27] |
Wen L, Wang YD, Shen DF, et al. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury[J]. Neural Regen Res, 2022, 17(12): 2717-2724.
|
[1] | WU Lingxi, DU Yixuan, GAO Xiangdong. Inhibitory effect of IL-27 on the overactivation of microglia[J]. Journal of China Pharmaceutical University, 2024, 55(6): 801-808. DOI: 10.11665/j.issn.1000-5048.2024022702 |
[2] | CHANG Yuan, MAGETA Mageta Samwel, LI Nibowen, TANG Yingqi, LI Huangjuan, QIAN Chenggen. Research advances in modulating microglia for intervening in Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(5): 603-612. DOI: 10.11665/j.issn.1000-5048.2024030201 |
[3] | YANG Jingwen, CHEN Qian, SHAN Yunlong, LIU Jiali, WEI Ning, WANG Jing, WANG Guangji, ZHOU Fang. Research progress on mesenchymal stem cell products and their exosomes in the treatment of inflammatory bowel disease[J]. Journal of China Pharmaceutical University, 2024, 55(1): 103-114. DOI: 10.11665/j.issn.1000-5048.2023113001 |
[4] | ZHANG Heng, CHEN Qianqian, GUI Yanping, HUANG Min, GUO Yabing, ZHAO Li. Mechanism of M2 macrophage-derived exosomes in promoting the migration of glioblastoma via transferring miR-1260b[J]. Journal of China Pharmaceutical University, 2023, 54(1): 95-106. DOI: 10.11665/j.issn.1000-5048.2023020901 |
[5] | CHU Xuxin, BU Fanxue, YIN Tingjie, HUO Meirong. Antitumor strategies based on targeted modulation of tumor-associated macrophages[J]. Journal of China Pharmaceutical University, 2021, 52(3): 261-269. DOI: 10.11665/j.issn.1000-5048.20210301 |
[6] | FAN Yixin, LIU Haijiao, LI Yixuan, ZHANG Yan, LIU Wentao, ZHANG Guangqin. Quercetin ameliorates postoperative pain by suppressing matrix metalloproteinase in microglia[J]. Journal of China Pharmaceutical University, 2017, 48(3): 343-347. DOI: 10.11665/j.issn.1000-5048.20170315 |
[7] | CHEN Lu, LI Jiajie, PAN Cailong, ZHOU Danli, LIU Wentao, ZHANG Guangqin. Tetramethylpyrazine attenuates morphine tolerance through suppressing spinal microglia activation in mice[J]. Journal of China Pharmaceutical University, 2015, 46(2): 230-234. DOI: 10.11665/j.issn.1000-5048.20150216 |
[8] | SONG Huayuan, ZHOU Danli, HAN Yuan, LIU Wentao. Baicalin attenuates morphine tolerance through suppressing spinal microglia activation in mice[J]. Journal of China Pharmaceutical University, 2014, 45(3): 346-351. DOI: 10.11665/j.issn.1000-5048.20140317 |
[9] | Co m parison of Specific Receptor Binding Assay and Fluores cence Polarization Im m unoassay in Monitoring of Blood Cyclosporine A[J]. Journal of China Pharmaceutical University, 1999, (4): 42-44. |
[10] | APPLICATION OF POLARIZATION TRANSFER TECHNIQUE INEPT, DEPT AND QUATERNARY CARBON PULSE SEQUENCE IN ~(13)CNMR DETERMINATION[J]. Journal of China Pharmaceutical University, 1988, (2): 149-153. |