• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
JIA Yue, ZHANG Hengchuan, ZHAO Yuanyuan, et al. Effect of chemical modification on biological properties of hyaluronic acid[J]. J China Pharm Univ, 2025, 56(1): 119 − 124. DOI: 10.11665/j.issn.1000-5048.2024042103
Citation: JIA Yue, ZHANG Hengchuan, ZHAO Yuanyuan, et al. Effect of chemical modification on biological properties of hyaluronic acid[J]. J China Pharm Univ, 2025, 56(1): 119 − 124. DOI: 10.11665/j.issn.1000-5048.2024042103

Effect of chemical modification on biological properties of hyaluronic acid

Funds: This study was supported by the National Natural Science Foundation of China(No. 81972835,No.82003305)
More Information
  • Received Date: April 20, 2024
  • Hyaluronic acid (HA) possesses excellent biocompatibility, biodegradability, and non-immunogenicity, and exhibits active targeting capability to receptors such as cluster of differentiation 44 (CD44). Therefore, HA has become an important material for the design and preparation of drug delivery carriers in recent years. HA is rich in functional groups that can be chemically modified, but different modification methods and sites can affect its biological properties. This paper summarizes and discusses the effects of chemical modification on the biological properties of HA based on the formation mechanisms of such properties, as well as the derivatization and characterization methods of HA, so as to provide some reference for rational research on chemical modification of HA.

  • [1]
    Fallacara A, Baldini E, Manfredini S, et al. Hyaluronic acid in the third millennium[J]. Polymers (Basel), 2018, 10(7): 701. doi: 10.3390/polym10070701
    [2]
    Huynh A, Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology[J]. Carbohydr Res, 2020, 489: 107950. doi: 10.1016/j.carres.2020.107950
    [3]
    Cowman MK, Spagnoli C, Kudasheva D, et al. Extended, relaxed, and condensed conformations of hyaluronan observed by atomic force microscopy[J]. Biophys J, 2005, 88(1): 590-602. doi: 10.1529/biophysj.104.049361
    [4]
    Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting[J]. Expert Opin Drug Deliv, 2019, 16(9): 915-936. doi: 10.1080/17425247.2019.1645115
    [5]
    Luo ZJ, Dai Y, Gao HL. Development and application of hyaluronic acid in tumor targeting drug delivery[J]. Acta Pharm Sin B, 2019, 9(6): 1099-1112. doi: 10.1016/j.apsb.2019.06.004
    [6]
    Zimmer BM, Barycki JJ, Simpson MA. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars[J]. Am J Physiol Cell Physiol, 2022, 322(6): C1201-C1213. doi: 10.1152/ajpcell.00130.2022
    [7]
    Maloney FP, Kuklewicz J, Corey RA, et al. Structure, substrate recognition and initiation of hyaluronan synthase[J]. Nature, 2022, 604(7904): 195-201. doi: 10.1038/s41586-022-04534-2
    [8]
    Chen C, Zhao SJ, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
    [9]
    Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan receptors as mediators and modulators of the tumor microenvironment[J]. Adv Healthc Mater, 2023, 12(5): e2202118. doi: 10.1002/adhm.202202118
    [10]
    Banerji S, Wright AJ, Noble M, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction[J]. Nat Struct Mol Biol, 2007, 14(3): 234-239. doi: 10.1038/nsmb1201
    [11]
    Kwon MY, Wang C, Galarraga JH, et al. Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials[J]. Biomaterials, 2019, 222: 119451. doi: 10.1016/j.biomaterials.2019.119451
    [12]
    Skandalis SS, Karalis T, Heldin P. Intracellular hyaluronan: importance for cellular functions[J]. Semin Cancer Biol, 2020, 62: 20-30. doi: 10.1016/j.semcancer.2019.07.002
    [13]
    Danielson BT, Knudson CB, Knudson W. Extracellular processing of the cartilage proteoglycan aggregate and its effect on CD44-mediated internalization of hyaluronan[J]. J Biol Chem, 2015, 290(15): 9555-9570. doi: 10.1074/jbc.M115.643171
    [14]
    Ni C, Zhang ZJ, Wang YL, et al. Hyaluronic acid and HA-modified cationic liposomes for promoting skin penetration and retention[J]. J Control Release, 2023, 357: 432-443. doi: 10.1016/j.jconrel.2023.03.049
    [15]
    Lee SY, Ko SH, Shim JS, et al. Tumor targeting and lipid rafts disrupting hyaluronic acid-cyclodextrin-based nanoassembled structure for cancer therapy[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36628-36640. doi: 10.1021/acsami.8b08243
    [16]
    Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway[J]. J Biol Chem, 2002, 277(41): 38013-38020. doi: 10.1074/jbc.M202404200
    [17]
    Johnson LA, Jackson DG. Hyaluronan and its receptors: key mediators of immune cell entry and trafficking in the lymphatic system[J]. Cells, 2021, 10(8): 2061. doi: 10.3390/cells10082061
    [18]
    Weigel PH. Systemic glycosaminoglycan clearance by HARE/stabilin-2 activates intracellular signaling[J]. Cells, 2020, 9(11): 2366. doi: 10.3390/cells9112366
    [19]
    Carvalho AM, Soares da Costa D, Paulo PMR, et al. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation[J]. Acta Biomater, 2021, 119: 114-124. doi: 10.1016/j.actbio.2020.10.024
    [20]
    Ezz MA, Mansouri A, Akthar I, et al. Hyaluronan regulates sperm-induced inflammatory response by enhancing sperm attachment to bovine endometrial epithelial cells via CD44: in-silico and in-vitro approaches[J]. Front Endocrinol (Lausanne), 2023, 14: 1134868. doi: 10.3389/fendo.2023.1134868
    [21]
    Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(2): L137-L147. doi: 10.1152/ajplung.00071.2010
    [22]
    Murata M, Yudoh K, Shimizu H, et al. Layilin, a talin-binding hyaluronan receptor, is expressed in human articular chondrocytes and synoviocytes and is down-regulated by interleukin-1β[J]. Mod Rheumatol, 2013, 23(3): 478-488. doi: 10.3109/s10165-012-0686-x
    [23]
    Weigel PH. Planning, evaluating and vetting receptor signaling studies to assess hyaluronan size-dependence and specificity[J]. Glycobiology, 2017, 27(9): 796-799. doi: 10.1093/glycob/cwx056
    [24]
    Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context[J]. Matrix Biol, 2019, 78/79: 1-10. doi: 10.1016/j.matbio.2019.02.002
    [25]
    Litwiniuk M, Krejner A, Speyrer MS, et al. Hyaluronic acid in inflammation and tissue regeneration[J]. Wounds, 2016, 28(3): 78-88.
    [26]
    Altman RD. Status of hyaluronan supplementation therapy in osteoarthritis[J]. Curr Rheumatol Rep, 2003, 5(1): 7-14. doi: 10.1007/s11926-003-0077-6
    [27]
    Wang J, Liu D, Guan S, et al. Hyaluronic acid-modified liposomal honokiol nanocarrier: enhance anti-metastasis and antitumor efficacy against breast cancer[J]. Carbohydr Polym, 2020, 235: 115981. doi: 10.1016/j.carbpol.2020.115981
    [28]
    Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity[J]. Bioconjug Chem, 2008, 19(6): 1319-1325. doi: 10.1021/bc8000485
    [29]
    Schanté CE, Zuber G, Herlin C, et al. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications[J]. Carbohydr Polym, 2011, 85(3): 469-489. doi: 10.1016/j.carbpol.2011.03.019
    [30]
    Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications[J]. Int J Biol Macromol, 2019, 121: 556-571. doi: 10.1016/j.ijbiomac.2018.10.049
    [31]
    Sánchez-Téllez DA, Rodríguez-Lorenzo LM, Téllez-Jurado L. Siloxane-inorganic chemical crosslinking of hyaluronic acid - based hybrid hydrogels: structural characterization[J]. Carbohydr Polym, 2020, 230: 115590. doi: 10.1016/j.carbpol.2019.115590
    [32]
    Sun HF, Cao D, Liu YH, et al. Low molecular weight heparin-based reduction-sensitive nanoparticles for antitumor and anti-metastasis of orthotopic breast cancer[J]. Biomater Sci, 2018, 6(8): 2172-2188. doi: 10.1039/C8BM00486B
    [33]
    Weigel PH, Baggenstoss BA. What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling[J]? Glycobiology, 2017, 27 (9): 868-877.
    [34]
    Teriete P, Banerji S, Noble M, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44[J]. Mol Cell, 2004, 13(4): 483-496. doi: 10.1016/S1097-2765(04)00080-2
    [35]
    Huang GL, Huang HL. Application of hyaluronic acid as carriers in drug delivery[J]. Drug Deliv, 2018, 25(1): 766-772. doi: 10.1080/10717544.2018.1450910
    [36]
    Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives[J]. J Control Release, 2010, 141(1): 2-12. doi: 10.1016/j.jconrel.2009.09.010
    [37]
    Montanari E, Zoratto N, Mosca L, et al. Halting hyaluronidase activity with hyaluronan-based nanohydrogels: development of versatile injectable formulations[J]. Carbohydr Polym, 2019, 221: 209-220. doi: 10.1016/j.carbpol.2019.06.004
    [38]
    Schanté CE, Zuber G, Herlin C, et al. Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids[J]. Carbohydr Polym, 2012, 87(3): 2211-2216. doi: 10.1016/j.carbpol.2011.10.050
    [39]
    Li HM, Guo HL, Lei C, et al. Nanotherapy in joints: increasing endogenous hyaluronan production by delivering hyaluronan synthase 2[J]. Adv Mater, 2019, 31(46): e1904535. doi: 10.1002/adma.201904535
    [40]
    Hamilton RG, Strobos J, Adkinson NF Jr. Immunogenicity studies of cosmetically administered nonanimal-stabilized hyaluronic acid particles[J]. Dermatol Surg, 2007, 33(Suppl 2): S176-S185.
    [41]
    Liu LX, Cao FQ, Liu XX, et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses[J]. ACS Appl Mater Interfaces, 2016, 8(19): 11969-11979. doi: 10.1021/acsami.6b01135
  • Related Articles

    [1]ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201
    [2]HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101
    [3]ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904
    [4]TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501
    [5]XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901
    [6]GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201
    [7]YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
    [8]WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102
    [9]YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304
    [10]Zhang Zunjian, Yu Shuqin, Xiang Bingren, An Dengkui. A New Artificial Neural Network Model:Combined Counter-Back Propagation and its Application[J]. Journal of China Pharmaceutical University, 1996, (11).
  • Cited by

    Periodical cited type(1)

    1. 赵倩,魏宇,郭凯敏,王文佳,周水平,孙鹤,方坚松,胡蕴慧. 人工智能结合生物网络对“养血清脑制剂”和“逍遥丸”组方的优化及验证. 中药药理与临床. 2024(04): 27-33 .

    Other cited types(3)

Catalog

    Article views (17) PDF downloads (7) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return