Citation: | JIA Yue, ZHANG Hengchuan, ZHAO Yuanyuan, et al. Effect of chemical modification on biological properties of hyaluronic acid[J]. J China Pharm Univ, 2025, 56(1): 119 − 124. DOI: 10.11665/j.issn.1000-5048.2024042103 |
Hyaluronic acid (HA) possesses excellent biocompatibility, biodegradability, and non-immunogenicity, and exhibits active targeting capability to receptors such as cluster of differentiation 44 (CD44). Therefore, HA has become an important material for the design and preparation of drug delivery carriers in recent years. HA is rich in functional groups that can be chemically modified, but different modification methods and sites can affect its biological properties. This paper summarizes and discusses the effects of chemical modification on the biological properties of HA based on the formation mechanisms of such properties, as well as the derivatization and characterization methods of HA, so as to provide some reference for rational research on chemical modification of HA.
[1] |
Fallacara A, Baldini E, Manfredini S, et al. Hyaluronic acid in the third millennium[J]. Polymers (Basel), 2018, 10(7): 701. doi: 10.3390/polym10070701
|
[2] |
Huynh A, Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology[J]. Carbohydr Res, 2020, 489: 107950. doi: 10.1016/j.carres.2020.107950
|
[3] |
Cowman MK, Spagnoli C, Kudasheva D, et al. Extended, relaxed, and condensed conformations of hyaluronan observed by atomic force microscopy[J]. Biophys J, 2005, 88(1): 590-602. doi: 10.1529/biophysj.104.049361
|
[4] |
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting[J]. Expert Opin Drug Deliv, 2019, 16(9): 915-936. doi: 10.1080/17425247.2019.1645115
|
[5] |
Luo ZJ, Dai Y, Gao HL. Development and application of hyaluronic acid in tumor targeting drug delivery[J]. Acta Pharm Sin B, 2019, 9(6): 1099-1112. doi: 10.1016/j.apsb.2019.06.004
|
[6] |
Zimmer BM, Barycki JJ, Simpson MA. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars[J]. Am J Physiol Cell Physiol, 2022, 322(6): C1201-C1213. doi: 10.1152/ajpcell.00130.2022
|
[7] |
Maloney FP, Kuklewicz J, Corey RA, et al. Structure, substrate recognition and initiation of hyaluronan synthase[J]. Nature, 2022, 604(7904): 195-201. doi: 10.1038/s41586-022-04534-2
|
[8] |
Chen C, Zhao SJ, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
|
[9] |
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan receptors as mediators and modulators of the tumor microenvironment[J]. Adv Healthc Mater, 2023, 12(5): e2202118. doi: 10.1002/adhm.202202118
|
[10] |
Banerji S, Wright AJ, Noble M, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction[J]. Nat Struct Mol Biol, 2007, 14(3): 234-239. doi: 10.1038/nsmb1201
|
[11] |
Kwon MY, Wang C, Galarraga JH, et al. Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials[J]. Biomaterials, 2019, 222: 119451. doi: 10.1016/j.biomaterials.2019.119451
|
[12] |
Skandalis SS, Karalis T, Heldin P. Intracellular hyaluronan: importance for cellular functions[J]. Semin Cancer Biol, 2020, 62: 20-30. doi: 10.1016/j.semcancer.2019.07.002
|
[13] |
Danielson BT, Knudson CB, Knudson W. Extracellular processing of the cartilage proteoglycan aggregate and its effect on CD44-mediated internalization of hyaluronan[J]. J Biol Chem, 2015, 290(15): 9555-9570. doi: 10.1074/jbc.M115.643171
|
[14] |
Ni C, Zhang ZJ, Wang YL, et al. Hyaluronic acid and HA-modified cationic liposomes for promoting skin penetration and retention[J]. J Control Release, 2023, 357: 432-443. doi: 10.1016/j.jconrel.2023.03.049
|
[15] |
Lee SY, Ko SH, Shim JS, et al. Tumor targeting and lipid rafts disrupting hyaluronic acid-cyclodextrin-based nanoassembled structure for cancer therapy[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36628-36640. doi: 10.1021/acsami.8b08243
|
[16] |
Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway[J]. J Biol Chem, 2002, 277(41): 38013-38020. doi: 10.1074/jbc.M202404200
|
[17] |
Johnson LA, Jackson DG. Hyaluronan and its receptors: key mediators of immune cell entry and trafficking in the lymphatic system[J]. Cells, 2021, 10(8): 2061. doi: 10.3390/cells10082061
|
[18] |
Weigel PH. Systemic glycosaminoglycan clearance by HARE/stabilin-2 activates intracellular signaling[J]. Cells, 2020, 9(11): 2366. doi: 10.3390/cells9112366
|
[19] |
Carvalho AM, Soares da Costa D, Paulo PMR, et al. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation[J]. Acta Biomater, 2021, 119: 114-124. doi: 10.1016/j.actbio.2020.10.024
|
[20] |
Ezz MA, Mansouri A, Akthar I, et al. Hyaluronan regulates sperm-induced inflammatory response by enhancing sperm attachment to bovine endometrial epithelial cells via CD44: in-silico and in-vitro approaches[J]. Front Endocrinol (Lausanne), 2023, 14: 1134868. doi: 10.3389/fendo.2023.1134868
|
[21] |
Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(2): L137-L147. doi: 10.1152/ajplung.00071.2010
|
[22] |
Murata M, Yudoh K, Shimizu H, et al. Layilin, a talin-binding hyaluronan receptor, is expressed in human articular chondrocytes and synoviocytes and is down-regulated by interleukin-1β[J]. Mod Rheumatol, 2013, 23(3): 478-488. doi: 10.3109/s10165-012-0686-x
|
[23] |
Weigel PH. Planning, evaluating and vetting receptor signaling studies to assess hyaluronan size-dependence and specificity[J]. Glycobiology, 2017, 27(9): 796-799. doi: 10.1093/glycob/cwx056
|
[24] |
Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context[J]. Matrix Biol, 2019, 78/79: 1-10. doi: 10.1016/j.matbio.2019.02.002
|
[25] |
Litwiniuk M, Krejner A, Speyrer MS, et al. Hyaluronic acid in inflammation and tissue regeneration[J]. Wounds, 2016, 28(3): 78-88.
|
[26] |
Altman RD. Status of hyaluronan supplementation therapy in osteoarthritis[J]. Curr Rheumatol Rep, 2003, 5(1): 7-14. doi: 10.1007/s11926-003-0077-6
|
[27] |
Wang J, Liu D, Guan S, et al. Hyaluronic acid-modified liposomal honokiol nanocarrier: enhance anti-metastasis and antitumor efficacy against breast cancer[J]. Carbohydr Polym, 2020, 235: 115981. doi: 10.1016/j.carbpol.2020.115981
|
[28] |
Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity[J]. Bioconjug Chem, 2008, 19(6): 1319-1325. doi: 10.1021/bc8000485
|
[29] |
Schanté CE, Zuber G, Herlin C, et al. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications[J]. Carbohydr Polym, 2011, 85(3): 469-489. doi: 10.1016/j.carbpol.2011.03.019
|
[30] |
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications[J]. Int J Biol Macromol, 2019, 121: 556-571. doi: 10.1016/j.ijbiomac.2018.10.049
|
[31] |
Sánchez-Téllez DA, Rodríguez-Lorenzo LM, Téllez-Jurado L. Siloxane-inorganic chemical crosslinking of hyaluronic acid - based hybrid hydrogels: structural characterization[J]. Carbohydr Polym, 2020, 230: 115590. doi: 10.1016/j.carbpol.2019.115590
|
[32] |
Sun HF, Cao D, Liu YH, et al. Low molecular weight heparin-based reduction-sensitive nanoparticles for antitumor and anti-metastasis of orthotopic breast cancer[J]. Biomater Sci, 2018, 6(8): 2172-2188. doi: 10.1039/C8BM00486B
|
[33] |
Weigel PH, Baggenstoss BA. What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling[J]? Glycobiology, 2017, 27 (9): 868-877.
|
[34] |
Teriete P, Banerji S, Noble M, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44[J]. Mol Cell, 2004, 13(4): 483-496. doi: 10.1016/S1097-2765(04)00080-2
|
[35] |
Huang GL, Huang HL. Application of hyaluronic acid as carriers in drug delivery[J]. Drug Deliv, 2018, 25(1): 766-772. doi: 10.1080/10717544.2018.1450910
|
[36] |
Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives[J]. J Control Release, 2010, 141(1): 2-12. doi: 10.1016/j.jconrel.2009.09.010
|
[37] |
Montanari E, Zoratto N, Mosca L, et al. Halting hyaluronidase activity with hyaluronan-based nanohydrogels: development of versatile injectable formulations[J]. Carbohydr Polym, 2019, 221: 209-220. doi: 10.1016/j.carbpol.2019.06.004
|
[38] |
Schanté CE, Zuber G, Herlin C, et al. Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids[J]. Carbohydr Polym, 2012, 87(3): 2211-2216. doi: 10.1016/j.carbpol.2011.10.050
|
[39] |
Li HM, Guo HL, Lei C, et al. Nanotherapy in joints: increasing endogenous hyaluronan production by delivering hyaluronan synthase 2[J]. Adv Mater, 2019, 31(46): e1904535. doi: 10.1002/adma.201904535
|
[40] |
Hamilton RG, Strobos J, Adkinson NF Jr. Immunogenicity studies of cosmetically administered nonanimal-stabilized hyaluronic acid particles[J]. Dermatol Surg, 2007, 33(Suppl 2): S176-S185.
|
[41] |
Liu LX, Cao FQ, Liu XX, et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses[J]. ACS Appl Mater Interfaces, 2016, 8(19): 11969-11979. doi: 10.1021/acsami.6b01135
|
[1] | SONG Linqi, ZHENG Feng. Preparation, characterization and in vitro release of diclofenac grafted with hyaluronic acid[J]. Journal of China Pharmaceutical University, 2025, 56(1): 49-55. DOI: 10.11665/j.issn.1000-5048.2024072601 |
[2] | XU Tao, WANG Xiaowei, LIU Xiaorong, WANG Yazhou, LI Zhiyu. Design, synthesis and biological evaluation of ALK5 inhibitors[J]. Journal of China Pharmaceutical University, 2020, 51(4): 441-448. DOI: 10.11665/j.issn.1000-5048.20200408 |
[3] | YUE Xiaohong, YE Jiqing, SUN Liping. Biological functions and related diseases of STATs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 404-411. DOI: 10.11665/j.issn.1000-5048.20160404 |
[4] | LUO Kaiming, ZHAO Hu, GAO Xiangdong. Preparation of a monoclonal antibody against hyaluronic acid and its application in immunoassay[J]. Journal of China Pharmaceutical University, 2015, 46(6): 740-744. DOI: 10.11665/j.issn.1000-5048.20150618 |
[5] | WU Mingming, FANG Lei, GOU Shaohua, CHEN Li. 以2-甲基-2-取代苯氧基丙酸为离去基团的铂(Ⅱ)配合物的合成、表征及细胞毒活性[J]. Journal of China Pharmaceutical University, 2013, 44(4): 303-306. DOI: 10.11665/j.issn.1000-5048.20130403 |
[6] | ZHANG Li, ZHOU Jian-ping, YAO Jing. Preparation and properties of paclitaxel-loaded glycyrrhetinic acid-modified hyaluronic acid nanoparticles[J]. Journal of China Pharmaceutical University, 2012, 43(3): 226-230. |
[7] | SHI Wei, SUN Li, LIN Sen-sen, YUAN Sheng-tao, ZHANG Lu-yong. Construction of eukaryotic expression plasmid for human TF full-length,TF truncated and characterization of their biological function[J]. Journal of China Pharmaceutical University, 2009, 40(5): 465-470. |
[8] | Chemical Modification of Escherichia Coli L-Asparaginase with Polyethylene Glycol[J]. Journal of China Pharmaceutical University, 2000, (3): 72-75. |
[9] | Comparison of Two Bioassay Methods to Determine the in vivo Biological Activity of rhEPO[J]. Journal of China Pharmaceutical University, 1998, (1): 76-78. |
[10] | Chemical Modification of Guanfu Base A[J]. Journal of China Pharmaceutical University, 1992, (5): 257-259. |