Citation: | LIU Lina, YU Peng, CHEN Li, SUN Zhiguang, TANG Yiqun. Effects and mechanism of quercetin on electric current of Nav1.8 in rat dorsal root ganglion neurons[J]. Journal of China Pharmaceutical University, 2015, 46(1): 94-99. DOI: 10.11665/j.issn.1000-5048.20150114 |
[1] |
Molliver DC,Radeke MJ,Feinstein SC,et al.Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections[J].J Comp Neurol,1995, 361(3):404-416.
|
[2] |
Gerke MB,Plenderleith MB.Ultrastructural analysis of the central terminals of primary sensory neurones labelled by transganglionic transport of bandeiraea simplicifolia I-isolectin B4[J].Neuroscience,2004, 127(1):165-175.
|
[3] |
Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family[J].Genome Biol,2003, 4(3):207.
|
[4] |
Evans JR, Bielefeldt K. Regulation of sodium currents through oxidation and reduction of thiol residues[J].Neuroscience,2000, 101(1):229-236.
|
[5] |
Qi FH,Zhou YL,Xu GY.Targeting voltage-gated sodium channels for treatment for chronic visceral pain[J].World J Gastroenterol,2011, 17(19):2357-2364.
|
[6] |
Djouhri L,Fang X,Okuse K,et al.The TTX-resistant sodium channel Nav1.8(SNS/PN3):expression and correlation with membrane properties in rat nociceptive primary afferent neurons[J].J Physiol,2003, 550(Pt 3):739-752.
|
[7] |
Fukuoka T,Kobayashi K,Yamanaka H,et al.Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons[J].J Comp Neurol,2008, 510(2):188-206.
|
[8] |
Coggeshall RE,Tate S,Carlton SM.Differential expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 in normal and inflamed rats[J].Neurosci Lett,2004, 355(1/2):45-48.
|
[9] |
Laird JM,Souslova V,Wood JN,et al.Deficits in visceral pain and referred hyperalgesia in Nav1.8(SNS/PN3)-null mice[J].J Neurosci,2002, 22(19):8352-8356.
|
[10] |
Yoshimura N,Seki S,Novakovic SD,et al.The involvement of the tetrodotoxin-resistant sodium channel Na(v)1.8(PN3/SNS)in a rat model of visceral pain[J].J Neurosci,2001, 21(21):8690-8696.
|
[11] |
King DE,Macleod RJ,Vanner SJ.Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons[J].Neurogastroenterol Motil,2009, 21(8):880-e64.
|
[12] |
Filho AW,Filho VC,Olinger L,et al.Quercetin:further investigation of its antinociceptive properties and mechanisms of action[J].Arch Pharm Res,2008, 31(6):713-721.
|
[13] |
Porreca F,Lai J,Bian D,et al.A comparison of the potential role of the tetrodotoxin-insensitive sodium channels,PN3/SNS and NaN/SNS2,in rat models of chronic pain[J].Proc Natl Acad Sci U S A,1999, 96(14):7640-7644.
|
[14] |
Jarvis MF, Honore P, Shieh CC, et al. A-803467,a potent and selective Nav1.8 sodium channel blocker,attenuates neuropathic and inflammol/Latory pain in the rat[J].Proc Natl Acad Sci U S A,2007, 104(20):8520-8525.
|
[15] |
Yao Y,Han DD,Zhang T,et al.Quercetin improves cognitive defi-cits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons[J].Phytother Res,2010, 24(1):136-140.
|
[16] |
Scola G,Conte D,Spada PW,et al.Flavan-3-ol compounds from wine wastes with in vitro and in vivo antioxidant activity[J].Nutrients,2010, 2(10):1048-1059.
|
[17] |
Wallace CH,Baczko I,Jones L,et al.Inhibition of cardiac voltage-gated sodium channels by grape polyphenols[J].Br J Pharmacol,2006, 149(6):657-665.
|
[18] |
Liu LN, Sun ZG, Cai XT, et al. Quercetin improves TNF-α induced intestinal barrier dysfunction in Caco-2 cells[J].J China Pharm Univ(中国药科大学学报),2012,43(6):541-545.
|
[1] | LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603 |
[2] | CHEN Xin, YANG Qian, YOU Qidong, GUO Xiaoke. Advances of inhibitors targeting MLL1-WDR5 protein-protein interaction[J]. Journal of China Pharmaceutical University, 2022, 53(2): 125-136. DOI: 10.11665/j.issn.1000-5048.20220201 |
[3] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[4] | TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405 |
[5] | MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301 |
[6] | JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418 |
[7] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[8] | ZHANG Fangrong, WANG Wei. Advances of synthetic lipoproteins as drug nanovectors[J]. Journal of China Pharmaceutical University, 2016, 47(2): 148-157. DOI: 10.11665/j.issn.1000-5048.20160204 |
[9] | LIU Fang, SUN Haopeng, YOU Qidong. Advances in small-molecule inhibitors targeting Hsp90-Cdc37 protein-protein interaction[J]. Journal of China Pharmaceutical University, 2015, 46(3): 272-278. DOI: 10.11665/j.issn.1000-5048.20150303 |
[10] | WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303 |