• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Lina, YU Peng, CHEN Li, SUN Zhiguang, TANG Yiqun. Effects and mechanism of quercetin on electric current of Nav1.8 in rat dorsal root ganglion neurons[J]. Journal of China Pharmaceutical University, 2015, 46(1): 94-99. DOI: 10.11665/j.issn.1000-5048.20150114
Citation: LIU Lina, YU Peng, CHEN Li, SUN Zhiguang, TANG Yiqun. Effects and mechanism of quercetin on electric current of Nav1.8 in rat dorsal root ganglion neurons[J]. Journal of China Pharmaceutical University, 2015, 46(1): 94-99. DOI: 10.11665/j.issn.1000-5048.20150114

Effects and mechanism of quercetin on electric current of Nav1.8 in rat dorsal root ganglion neurons

More Information
  • To study the effects of quercetin(Que)on the electric current of Nav1. 8(INav1. 8)in rat dorsal root ganglion(DRG)neurons, dose-effect relationship of Que on INav1. 8 and the activation and inactivation properties of voltage-dependent Nav1. 8 influenced by Que were studied by using the whole-cell patch clamp technique in fresh isolated rat DRG neurons. It was found that diffeent concerntrations of Que(10, 30, 100 μmol/L)could inhibit INav1. 8 peak value of DRG neurons in concentration-dependent manner. The inhibition of peak currents were(15. 32±3. 43)%, (22. 92±8. 24)% and(47. 29±11. 42)% respectively, the IC50 was 121. 38 μmol/L and the Hill coefficient was 0. 76. In the existence of Que(100 μmol/L), the activation curve of Nav1. 8 channel in DRG was slightly shifted to depolarizing direction for 0. 83 mV, and the inactivation curve was shifted to hyperpolarizing direction for 1. 86 mV. Compared with the stage before intervention, the half-activation voltage(V1/2=-40. 23±0. 25 mV)was significantly different(P< 0. 01). In conclusion, Que inhibits the Nav1. 8 channel activity in dose and voltage-dependent manner, which may count for the reduction of algesthesia transmission and the alleviation of chronic visceral pain.
  • [1]
    Molliver DC,Radeke MJ,Feinstein SC,et al.Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections[J].J Comp Neurol,1995, 361(3):404-416.
    [2]
    Gerke MB,Plenderleith MB.Ultrastructural analysis of the central terminals of primary sensory neurones labelled by transganglionic transport of bandeiraea simplicifolia I-isolectin B4[J].Neuroscience,2004, 127(1):165-175.
    [3]
    Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family[J].Genome Biol,2003, 4(3):207.
    [4]
    Evans JR, Bielefeldt K. Regulation of sodium currents through oxidation and reduction of thiol residues[J].Neuroscience,2000, 101(1):229-236.
    [5]
    Qi FH,Zhou YL,Xu GY.Targeting voltage-gated sodium channels for treatment for chronic visceral pain[J].World J Gastroenterol,2011, 17(19):2357-2364.
    [6]
    Djouhri L,Fang X,Okuse K,et al.The TTX-resistant sodium channel Nav1.8(SNS/PN3):expression and correlation with membrane properties in rat nociceptive primary afferent neurons[J].J Physiol,2003, 550(Pt 3):739-752.
    [7]
    Fukuoka T,Kobayashi K,Yamanaka H,et al.Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons[J].J Comp Neurol,2008, 510(2):188-206.
    [8]
    Coggeshall RE,Tate S,Carlton SM.Differential expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 in normal and inflamed rats[J].Neurosci Lett,2004, 355(1/2):45-48.
    [9]
    Laird JM,Souslova V,Wood JN,et al.Deficits in visceral pain and referred hyperalgesia in Nav1.8(SNS/PN3)-null mice[J].J Neurosci,2002, 22(19):8352-8356.
    [10]
    Yoshimura N,Seki S,Novakovic SD,et al.The involvement of the tetrodotoxin-resistant sodium channel Na(v)1.8(PN3/SNS)in a rat model of visceral pain[J].J Neurosci,2001, 21(21):8690-8696.
    [11]
    King DE,Macleod RJ,Vanner SJ.Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons[J].Neurogastroenterol Motil,2009, 21(8):880-e64.
    [12]
    Filho AW,Filho VC,Olinger L,et al.Quercetin:further investigation of its antinociceptive properties and mechanisms of action[J].Arch Pharm Res,2008, 31(6):713-721.
    [13]
    Porreca F,Lai J,Bian D,et al.A comparison of the potential role of the tetrodotoxin-insensitive sodium channels,PN3/SNS and NaN/SNS2,in rat models of chronic pain[J].Proc Natl Acad Sci U S A,1999, 96(14):7640-7644.
    [14]
    Jarvis MF, Honore P, Shieh CC, et al. A-803467,a potent and selective Nav1.8 sodium channel blocker,attenuates neuropathic and inflammol/Latory pain in the rat[J].Proc Natl Acad Sci U S A,2007, 104(20):8520-8525.
    [15]
    Yao Y,Han DD,Zhang T,et al.Quercetin improves cognitive defi-cits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons[J].Phytother Res,2010, 24(1):136-140.
    [16]
    Scola G,Conte D,Spada PW,et al.Flavan-3-ol compounds from wine wastes with in vitro and in vivo antioxidant activity[J].Nutrients,2010, 2(10):1048-1059.
    [17]
    Wallace CH,Baczko I,Jones L,et al.Inhibition of cardiac voltage-gated sodium channels by grape polyphenols[J].Br J Pharmacol,2006, 149(6):657-665.
    [18]
    Liu LN, Sun ZG, Cai XT, et al. Quercetin improves TNF-α induced intestinal barrier dysfunction in Caco-2 cells[J].J China Pharm Univ(中国药科大学学报),2012,43(6):541-545.
  • Related Articles

    [1]LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603
    [2]CHEN Xin, YANG Qian, YOU Qidong, GUO Xiaoke. Advances of inhibitors targeting MLL1-WDR5 protein-protein interaction[J]. Journal of China Pharmaceutical University, 2022, 53(2): 125-136. DOI: 10.11665/j.issn.1000-5048.20220201
    [3]FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406
    [4]TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405
    [5]MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301
    [6]JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418
    [7]YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417
    [8]ZHANG Fangrong, WANG Wei. Advances of synthetic lipoproteins as drug nanovectors[J]. Journal of China Pharmaceutical University, 2016, 47(2): 148-157. DOI: 10.11665/j.issn.1000-5048.20160204
    [9]LIU Fang, SUN Haopeng, YOU Qidong. Advances in small-molecule inhibitors targeting Hsp90-Cdc37 protein-protein interaction[J]. Journal of China Pharmaceutical University, 2015, 46(3): 272-278. DOI: 10.11665/j.issn.1000-5048.20150303
    [10]WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303

Catalog

    Article views (1414) PDF downloads (2376) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return