Citation: | GONG Siman, LAN Siyi, LI Jing, SUN Minjie. Application of iron oxide magnetic nanoparticles in tumor theranostics[J]. Journal of China Pharmaceutical University, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504 |
[1] |
Funkhouser J. Reinventing pharma: the theranostic revolution[J].Curr Drug Discov,2002,2:17-19.
|
[2] |
Li B,Gu Z,Kurniawan N,et al.Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive ph response and high relaxivity[J].Adv Mater, 2017,29(29):1700373.
|
[3] |
Swierczewska M, Han HS, Kim K, et al. Polysaccharide-based nanoparticles for theranostic nanomedicine[J].Adv Drug Deliv Rev,2016,99(Pt A):70-84.
|
[4] |
Kwon HJ,Shin K,Soh M,et al.Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles[J].Adv Mater,2018,30(42):e1704290.
|
[5] |
Wang ZL, Qiao RR, Tang N, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer[J].Biomaterials,2017,127:25-35.
|
[6] |
Patsula V,Kosinová L,Lovri'c M,et al.Superparamagnetic Fe3O4 nanoparticles:synthesis by thermal decomposition of iron(III)glucuronate and application in magnetic resonance imaging[J].ACS Appl Mater Interfaces,2016,8(11):7238-7247.
|
[7] |
Zhou LJ,Liu JP,Xiong F,et al.Preparation and in vitro evaluation of PEG-coated superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2013,44(4):316-320.
|
[8] |
Zhang YT,Li D,Yu M,et al.Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins[J].ACS Appl Mater Interfaces,2014,6(11):8836-8844.
|
[9] |
Li JC,Hu Y,Yang J,et al.Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors[J].Biomaterials,2015,38:10-21.
|
[10] |
Yao J,Xiong F,Zhu ZY,et al.Preparation and in vitro evaluation of vincristine-loaded superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2012,43(3):222-225.
|
[11] |
Kim KS,Kim J,Lee JY,et al.Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy[J].Nanoscale,2016,8(22):11625-11634.
|
[12] |
Shi W,Liu XY,Wei C,et al.Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles[J].Nanoscale,2015,7(41):17249-17253.
|
[13] |
Das R,Rinaldi-Montes N,Alonso J,et al.Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers[J].ACS Appl Mater Interfaces,2016,8(38):25162-25169.
|
[14] |
Sun X,Du RH,Zhang L,et al.A pH-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy[J].ACS Nano,2017,11(7):7049-7059.
|
[15] |
Hou WX,Toh TB,Abdullah LN,et al.Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection[J].Nanomed-Nanotechnol Biol Med,2017,13(3):783-793.
|
[16] |
Jia ZY,Song LN,Zang FC,et al.Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes[J].Theranostics,2016,6(11):1780-1791.
|
[17] |
Gao ZY,Hou Y,Zeng JF,et al.Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo[J].Adv Mater,2017,29(24).
|
[18] |
Zhou ZJ,Tian R,Wang ZY,et al.Artificial local magnetic field inhomogeneity enhances T2 relaxivity[J].Nat Commun,2017,8:15468.
|
[19] |
Wu CQ,Xu Y,Yang L,et al.Negatively charged magnetite nanoparticle clusters as efficient MRI probes for dendritic cell labeling and in vivo tracking[J].Adv Funct Mater,2015,25(23):3581-3591.
|
[20] |
Mashhadi Malekzadeh A,Ramazani A,Tabatabaei Rezaei SJ,et al.Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy[J].J Colloid Interface Sci,2017,490:64-73.
|
[21] |
Kim BH,Lee N,Kim H,et al.Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents[J].J Am Chem Soc,2011,133(32):12624-12631.
|
[22] |
Wei H,Bruns OT,Kaul MG,et al.Exceedingly small iron oxide nanoparticles as positive MRI contrast agents[J].Proc Natl Acad Sci U S A,2017,114(9):2325-2330.
|
[23] |
Clavijo Jordan MV,Beeman SC,Baldelomar EJ,et al.Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI[J].Contrast Media Mol Imaging,2014,9(5):323-332.
|
[24] |
Zhang H,Li L,Liu XL,et al.Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent[J].ACS Nano,2017,11(4):3614-3631.
|
[25] |
Jung H,Park B,Lee C,et al.Dual MRI T1 and T2(*)contrast with size-controlled iron oxide nanoparticles[J].Nanomed: Nanotechnol Biol Med,2014,10(8):1679-1689.
|
[26] |
Yang LJ,Wang ZY,Ma LC,et al.The roles of morphology on the relaxation rates of magnetic nanoparticles[J].ACS Nano,2018,12(5):4605-4614.
|
[27] |
Wang LY,Huang J,Chen HB,et al.Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J].ACS Nano,2017,11(5):4582-4592.
|
[28] |
Zhou HG,Tang JL,Li JY,et al.In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment[J].Nanoscale,2017,9(9):3040-3050.
|
[29] |
Hildebrandt B,Wust P,Ahlers O,et al.The cellular and molecular basis of hyperthermia[J].Crit Rev Oncol Hematol,2002,43(1):33-56.
|
[30] |
Zhao YJ,Song WX,Wang D,et al.Phase-shifted PFH@PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation[J].ACS Appl Mater Interfaces,2015,7(26):14231-14242.
|
[31] |
Shen S,Wang S,Zheng R,et al.Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation[J].Biomaterials,2015,39:67-74.
|
[32] |
Liu T,Shi SX,Liang C,et al.Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy[J].ACS Nano,2015,9(1):950-960.
|
[33] |
Lin LS,Cong ZX,Cao JB,et al.Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J].ACS Nano,2014,8(4):3876-3883.
|
[34] |
Feng W,Han XG,Wang RY,et al.Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows[J].Adv Mater Weinheim,2019,31(5):e1805919.
|
[35] |
Wu L,Chen L,Liu F,et al.Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer[J].Colloids Surf B Biointerfaces,2017,152:440-448.
|
[36] |
Yu GT,Rao L,Wu H,et al.Cancer theranostics:myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death(adv.funct.mater.37/2018)[J].Adv Funct Mater,2018,28(37):1870265.
|
[37] |
Wang WW,Hao CL,Sun MZ,et al.Spiky Fe3O4@Au supraparticles for multimodal in vivo imaging[J].Adv Funct Mater,2018,28(22):1800310.
|
[38] |
Le Fèvre R,Durand-Dubief M,Chebbi I,et al.Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma[J].Theranostics,2017,7(18):4618-4631.
|
[39] |
Tay ZW,Chandrasekharan P,Chiu-Lam A,et al.Magnetic particle imaging-guided heating in vivo using gradient Fields for arbitrary localization of magnetic hyperthermia therapy[J].ACS Nano,2018,12(4):3699-3713.
|
[40] |
Chang D,Lim M,Goos JACM,et al.Biologically targeted magnetic hyperthermia:potential and limitations[J].Front Pharmacol,2018,9:831.
|
[41] |
Obaidat IM,Issa B,Haik Y.Magnetic properties of magnetic nanoparticles for efficient hyperthermia[J].Nanomaterials(Basel),2015,5(1):63-89.
|
[42] |
Ding Q,Liu DF,Guo DW,et al.Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia[J].Biomaterials,2017,124:35-46.
|
[43] |
Di Corato R,Béalle G,Kolosnjaj-Tabi J,et al.Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes[J].ACS Nano,2015,9(3):2904-2916.
|
[44] |
Espinosa A,Di Corato R,Kolosnjaj-Tabi J,et al.Duality of iron oxide nanoparticles in cancer therapy:amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment[J].ACS Nano,2016,10(2):2436-2446.
|
[45] |
Huang YP, Mao KL, Zhang BL, et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics[J].Mater Sci Eng C Mater Biol Appl,2017,70(Pt 1):763-771.
|
[46] |
Zhang FR, Gong SM, Wu J, et al. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy[J].Biomacromolecules,2017,18(6):1793-1802.
|
[47] |
Shin JM,Oh SJ,Kwon S,et al.A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy[J].J Control Release,2017,267:181-190.
|
[48] |
Ruan SB,Yuan MQ,Zhang L,et al.Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles[J].Biomaterials,2015,37:425-435.
|
[49] |
Theek B,Baues M,Gremse F,et al.Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors[J].J Control Release,2018,282:25-34.
|
[50] |
Fenaroli F,Repnik U,Xu YT,et al.Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models[J].ACS Nano,2018,12(8):8646-8661.
|
[51] |
Wang ZH,Zhou CF,Xia JF,et al.Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4,folic acid and doxorubicin as dual-targeted drug nanocarrier[J].Colloids Surf B Biointerfaces,2013,106:60-65.
|
[52] |
Liu YL,Chen D,Shang P,et al.A review of magnet systems for targeted drug delivery[J].J Control Release,2019,302:90-104.
|
[53] |
Li SY,Li C,Jin SB,et al.Overcoming resistance to cisplatin by inhibition of glutathione S-transferases(GSTs)with ethacraplatin micelles in vitro and in vivo[J].Biomaterials,2017,144:119-129.
|
[54] |
Ray Chowdhuri A,Bhattacharya D,Sahu SK.Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery,imaging and as an MRI contrast agent[J].Dalton Trans,2016,45(7):2963-2973.
|
[55] |
Nowicka AM,Kowalczyk A,Jarzebinska A,et al.Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate[J].Biomacromolecules,2013,14(3):828-833.
|
[56] |
Yang GB,Gong H,Liu T,et al.Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer[J].Biomaterials,2015,60:62-71.
|
[57] |
Shen ZY,Chen TX,Ma XH,et al.Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy[J].ACS Nano,2017,11(11):10992-11004.
|
[58] |
Zhou ZW,Zhang QY,Zhang MH,et al.ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy[J].Theranostics,2018,8(17):4604-4619.
|
[59] |
Rouanet M,Lebrin M,Gross F,et al.Gene therapy for pancreatic cancer:specificity,issues and hopes[J].Int J Mol Sci,2017,18(6):E1231.
|
[60] |
Shen LZ,Li B,Qiao YS.Fe3O4 nanoparticles in targeted drug/gene delivery systems[J].Materials(Basel),2018,11(2):E324.
|
[61] |
Choi JW,Park JW,Na YJ,et al.Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy[J].Biomaterials,2015,65:163-174.
|
[62] |
Yang YF, Xie XY, Xu XQ, et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy[J].Colloids Surf B Biointerfaces,2016,146:607-615.
|
[63] |
Yang H,Chen Y,Chen ZY,et al.Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites[J].Biomater Sci,2017,5(5):1001-1013.
|
[64] |
Li TT, Shen X, Geng Y, et al. Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy[J].ACS Appl Mater Interfaces,2016,8(22):13748-13758.
|
[65] |
Jia HZ,Wang W,Zheng DW,et al.Multifunctional nanotherapeutics with all-in-one nanoentrapment of drug/gene/inorganic nanoparticle[J].ACS Appl Mater Interfaces,2016,8(11):6784-6789.
|
[1] | CAI Xu, WU Xiaoqian, HAN Lingfei, FENG Feng, QU Wei, LIU Wenyuan. Research progress on natural products regulating osteogenic differentiation[J]. Journal of China Pharmaceutical University, 2025, 56(1): 10-21. DOI: 10.11665/j.issn.1000-5048.2024101003 |
[2] | LU Ningshu, JI Tao, LU Yinglan, XU Xiyuan, GU Xiaochen, DING Yang. Drug delivery strategies and clinical research progress for encephalopathy[J]. Journal of China Pharmaceutical University, 2024, 55(5): 577-589. DOI: 10.11665/j.issn.1000-5048.2024063001 |
[3] | YAO Chunlu, ZHANG Weijie, ZHANG Yunlong, DENG Zhaoxia, WANG Mengling, ZHANG Zuoling, WANG Chen, SONG Qinxin, ZOU Bingjie. Progress of single-cell protein imaging methods[J]. Journal of China Pharmaceutical University, 2024, 55(2): 147-157. DOI: 10.11665/j.issn.1000-5048.2024010205 |
[4] | WANG Chen, ZHANG Zhengping, LI Yinchun. Development strategy and clinical research progress of universal chimeric antigen receptor T-cell drugs[J]. Journal of China Pharmaceutical University, 2023, 54(2): 141-149. DOI: 10.11665/j.issn.1000-5048.20211125001 |
[5] | LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603 |
[6] | YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503 |
[7] | WANG Chen, XU Jun, LIU Yanhua, WANG Zengtao, HU Yue, TIAN Taiping, YI Mengjuan. Research progress on functionalized graphene oxide as drug carriers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 117-124. DOI: 10.11665/j.issn.1000-5048.20170118 |
[8] | ZHANG Danfeng, JIAO Yu, LIU Yong, ZHANG Yanmin, ZHANG Zhimin, LU Tao. Progress of small molecule anti-tumor covalent drugs[J]. Journal of China Pharmaceutical University, 2017, 48(1): 1-7. DOI: 10.11665/j.issn.1000-5048.20170101 |
[9] | ZHANG Jinghui, WANG Yajing, HU Rong. Roles of Moesin in tumor progression[J]. Journal of China Pharmaceutical University, 2015, 46(3): 371-375. DOI: 10.11665/j.issn.1000-5048.20150319 |
[10] | Advances and Prospects of Drug Discovery and Development Zhang Yihua, Peng Sixun, Hua Weiyi[J]. Journal of China Pharmaceutical University, 1999, (2): 75-80. |