• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
GONG Siman, LAN Siyi, LI Jing, SUN Minjie. Application of iron oxide magnetic nanoparticles in tumor theranostics[J]. Journal of China Pharmaceutical University, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504
Citation: GONG Siman, LAN Siyi, LI Jing, SUN Minjie. Application of iron oxide magnetic nanoparticles in tumor theranostics[J]. Journal of China Pharmaceutical University, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504

Application of iron oxide magnetic nanoparticles in tumor theranostics

More Information
  • With the rapid development of nanotechnology, accurate personalized treatments for tumor have attracted more attention to increase the therapeutic effects and reduce the side effects. The emerging theranostic systems incorporating different therapeutic and diagnostic imaging capabilities have become a new research hotspot. Magnetic iron oxide nanoparticles(IONP)have been widely used in theranostic systems due to their unique imaging properties, stable thermal performance, excellent biocompatibility and admirable surface modifiability. In this review, we analyzed the advantages of IONP in the diagnosis and the treatment of tumor, and detailedly introduced the relevant strategies and latest research progress, including magnetic resonance imaging(MRI), photothermal therapy, magnetic hyperthermia, and magnetic targeted drug delivery, etc. Finally, the potential application of IONP in the clinical tumor theranostics was proposed.
  • [1]
    Funkhouser J. Reinventing pharma: the theranostic revolution[J].Curr Drug Discov,2002,2:17-19.
    [2]
    Li B,Gu Z,Kurniawan N,et al.Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive ph response and high relaxivity[J].Adv Mater, 2017,29(29):1700373.
    [3]
    Swierczewska M, Han HS, Kim K, et al. Polysaccharide-based nanoparticles for theranostic nanomedicine[J].Adv Drug Deliv Rev,2016,99(Pt A):70-84.
    [4]
    Kwon HJ,Shin K,Soh M,et al.Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles[J].Adv Mater,2018,30(42):e1704290.
    [5]
    Wang ZL, Qiao RR, Tang N, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer[J].Biomaterials,2017,127:25-35.
    [6]
    Patsula V,Kosinová L,Lovri'c M,et al.Superparamagnetic Fe3O4 nanoparticles:synthesis by thermal decomposition of iron(III)glucuronate and application in magnetic resonance imaging[J].ACS Appl Mater Interfaces,2016,8(11):7238-7247.
    [7]
    Zhou LJ,Liu JP,Xiong F,et al.Preparation and in vitro evaluation of PEG-coated superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2013,44(4):316-320.
    [8]
    Zhang YT,Li D,Yu M,et al.Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins[J].ACS Appl Mater Interfaces,2014,6(11):8836-8844.
    [9]
    Li JC,Hu Y,Yang J,et al.Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors[J].Biomaterials,2015,38:10-21.
    [10]
    Yao J,Xiong F,Zhu ZY,et al.Preparation and in vitro evaluation of vincristine-loaded superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2012,43(3):222-225.
    [11]
    Kim KS,Kim J,Lee JY,et al.Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy[J].Nanoscale,2016,8(22):11625-11634.
    [12]
    Shi W,Liu XY,Wei C,et al.Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles[J].Nanoscale,2015,7(41):17249-17253.
    [13]
    Das R,Rinaldi-Montes N,Alonso J,et al.Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers[J].ACS Appl Mater Interfaces,2016,8(38):25162-25169.
    [14]
    Sun X,Du RH,Zhang L,et al.A pH-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy[J].ACS Nano,2017,11(7):7049-7059.
    [15]
    Hou WX,Toh TB,Abdullah LN,et al.Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection[J].Nanomed-Nanotechnol Biol Med,2017,13(3):783-793.
    [16]
    Jia ZY,Song LN,Zang FC,et al.Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes[J].Theranostics,2016,6(11):1780-1791.
    [17]
    Gao ZY,Hou Y,Zeng JF,et al.Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo[J].Adv Mater,2017,29(24).
    [18]
    Zhou ZJ,Tian R,Wang ZY,et al.Artificial local magnetic field inhomogeneity enhances T2 relaxivity[J].Nat Commun,2017,8:15468.
    [19]
    Wu CQ,Xu Y,Yang L,et al.Negatively charged magnetite nanoparticle clusters as efficient MRI probes for dendritic cell labeling and in vivo tracking[J].Adv Funct Mater,2015,25(23):3581-3591.
    [20]
    Mashhadi Malekzadeh A,Ramazani A,Tabatabaei Rezaei SJ,et al.Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy[J].J Colloid Interface Sci,2017,490:64-73.
    [21]
    Kim BH,Lee N,Kim H,et al.Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents[J].J Am Chem Soc,2011,133(32):12624-12631.
    [22]
    Wei H,Bruns OT,Kaul MG,et al.Exceedingly small iron oxide nanoparticles as positive MRI contrast agents[J].Proc Natl Acad Sci U S A,2017,114(9):2325-2330.
    [23]
    Clavijo Jordan MV,Beeman SC,Baldelomar EJ,et al.Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI[J].Contrast Media Mol Imaging,2014,9(5):323-332.
    [24]
    Zhang H,Li L,Liu XL,et al.Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent[J].ACS Nano,2017,11(4):3614-3631.
    [25]
    Jung H,Park B,Lee C,et al.Dual MRI T1 and T2(*)contrast with size-controlled iron oxide nanoparticles[J].Nanomed: Nanotechnol Biol Med,2014,10(8):1679-1689.
    [26]
    Yang LJ,Wang ZY,Ma LC,et al.The roles of morphology on the relaxation rates of magnetic nanoparticles[J].ACS Nano,2018,12(5):4605-4614.
    [27]
    Wang LY,Huang J,Chen HB,et al.Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J].ACS Nano,2017,11(5):4582-4592.
    [28]
    Zhou HG,Tang JL,Li JY,et al.In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment[J].Nanoscale,2017,9(9):3040-3050.
    [29]
    Hildebrandt B,Wust P,Ahlers O,et al.The cellular and molecular basis of hyperthermia[J].Crit Rev Oncol Hematol,2002,43(1):33-56.
    [30]
    Zhao YJ,Song WX,Wang D,et al.Phase-shifted PFH@PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation[J].ACS Appl Mater Interfaces,2015,7(26):14231-14242.
    [31]
    Shen S,Wang S,Zheng R,et al.Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation[J].Biomaterials,2015,39:67-74.
    [32]
    Liu T,Shi SX,Liang C,et al.Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy[J].ACS Nano,2015,9(1):950-960.
    [33]
    Lin LS,Cong ZX,Cao JB,et al.Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J].ACS Nano,2014,8(4):3876-3883.
    [34]
    Feng W,Han XG,Wang RY,et al.Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows[J].Adv Mater Weinheim,2019,31(5):e1805919.
    [35]
    Wu L,Chen L,Liu F,et al.Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer[J].Colloids Surf B Biointerfaces,2017,152:440-448.
    [36]
    Yu GT,Rao L,Wu H,et al.Cancer theranostics:myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death(adv.funct.mater.37/2018)[J].Adv Funct Mater,2018,28(37):1870265.
    [37]
    Wang WW,Hao CL,Sun MZ,et al.Spiky Fe3O4@Au supraparticles for multimodal in vivo imaging[J].Adv Funct Mater,2018,28(22):1800310.
    [38]
    Le Fèvre R,Durand-Dubief M,Chebbi I,et al.Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma[J].Theranostics,2017,7(18):4618-4631.
    [39]
    Tay ZW,Chandrasekharan P,Chiu-Lam A,et al.Magnetic particle imaging-guided heating in vivo using gradient Fields for arbitrary localization of magnetic hyperthermia therapy[J].ACS Nano,2018,12(4):3699-3713.
    [40]
    Chang D,Lim M,Goos JACM,et al.Biologically targeted magnetic hyperthermia:potential and limitations[J].Front Pharmacol,2018,9:831.
    [41]
    Obaidat IM,Issa B,Haik Y.Magnetic properties of magnetic nanoparticles for efficient hyperthermia[J].Nanomaterials(Basel),2015,5(1):63-89.
    [42]
    Ding Q,Liu DF,Guo DW,et al.Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia[J].Biomaterials,2017,124:35-46.
    [43]
    Di Corato R,Béalle G,Kolosnjaj-Tabi J,et al.Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes[J].ACS Nano,2015,9(3):2904-2916.
    [44]
    Espinosa A,Di Corato R,Kolosnjaj-Tabi J,et al.Duality of iron oxide nanoparticles in cancer therapy:amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment[J].ACS Nano,2016,10(2):2436-2446.
    [45]
    Huang YP, Mao KL, Zhang BL, et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics[J].Mater Sci Eng C Mater Biol Appl,2017,70(Pt 1):763-771.
    [46]
    Zhang FR, Gong SM, Wu J, et al. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy[J].Biomacromolecules,2017,18(6):1793-1802.
    [47]
    Shin JM,Oh SJ,Kwon S,et al.A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy[J].J Control Release,2017,267:181-190.
    [48]
    Ruan SB,Yuan MQ,Zhang L,et al.Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles[J].Biomaterials,2015,37:425-435.
    [49]
    Theek B,Baues M,Gremse F,et al.Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors[J].J Control Release,2018,282:25-34.
    [50]
    Fenaroli F,Repnik U,Xu YT,et al.Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models[J].ACS Nano,2018,12(8):8646-8661.
    [51]
    Wang ZH,Zhou CF,Xia JF,et al.Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4,folic acid and doxorubicin as dual-targeted drug nanocarrier[J].Colloids Surf B Biointerfaces,2013,106:60-65.
    [52]
    Liu YL,Chen D,Shang P,et al.A review of magnet systems for targeted drug delivery[J].J Control Release,2019,302:90-104.
    [53]
    Li SY,Li C,Jin SB,et al.Overcoming resistance to cisplatin by inhibition of glutathione S-transferases(GSTs)with ethacraplatin micelles in vitro and in vivo[J].Biomaterials,2017,144:119-129.
    [54]
    Ray Chowdhuri A,Bhattacharya D,Sahu SK.Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery,imaging and as an MRI contrast agent[J].Dalton Trans,2016,45(7):2963-2973.
    [55]
    Nowicka AM,Kowalczyk A,Jarzebinska A,et al.Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate[J].Biomacromolecules,2013,14(3):828-833.
    [56]
    Yang GB,Gong H,Liu T,et al.Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer[J].Biomaterials,2015,60:62-71.
    [57]
    Shen ZY,Chen TX,Ma XH,et al.Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy[J].ACS Nano,2017,11(11):10992-11004.
    [58]
    Zhou ZW,Zhang QY,Zhang MH,et al.ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy[J].Theranostics,2018,8(17):4604-4619.
    [59]
    Rouanet M,Lebrin M,Gross F,et al.Gene therapy for pancreatic cancer:specificity,issues and hopes[J].Int J Mol Sci,2017,18(6):E1231.
    [60]
    Shen LZ,Li B,Qiao YS.Fe3O4 nanoparticles in targeted drug/gene delivery systems[J].Materials(Basel),2018,11(2):E324.
    [61]
    Choi JW,Park JW,Na YJ,et al.Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy[J].Biomaterials,2015,65:163-174.
    [62]
    Yang YF, Xie XY, Xu XQ, et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy[J].Colloids Surf B Biointerfaces,2016,146:607-615.
    [63]
    Yang H,Chen Y,Chen ZY,et al.Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites[J].Biomater Sci,2017,5(5):1001-1013.
    [64]
    Li TT, Shen X, Geng Y, et al. Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy[J].ACS Appl Mater Interfaces,2016,8(22):13748-13758.
    [65]
    Jia HZ,Wang W,Zheng DW,et al.Multifunctional nanotherapeutics with all-in-one nanoentrapment of drug/gene/inorganic nanoparticle[J].ACS Appl Mater Interfaces,2016,8(11):6784-6789.
  • Related Articles

    [1]CAI Xu, WU Xiaoqian, HAN Lingfei, FENG Feng, QU Wei, LIU Wenyuan. Research progress on natural products regulating osteogenic differentiation[J]. Journal of China Pharmaceutical University, 2025, 56(1): 10-21. DOI: 10.11665/j.issn.1000-5048.2024101003
    [2]LU Ningshu, JI Tao, LU Yinglan, XU Xiyuan, GU Xiaochen, DING Yang. Drug delivery strategies and clinical research progress for encephalopathy[J]. Journal of China Pharmaceutical University, 2024, 55(5): 577-589. DOI: 10.11665/j.issn.1000-5048.2024063001
    [3]YAO Chunlu, ZHANG Weijie, ZHANG Yunlong, DENG Zhaoxia, WANG Mengling, ZHANG Zuoling, WANG Chen, SONG Qinxin, ZOU Bingjie. Progress of single-cell protein imaging methods[J]. Journal of China Pharmaceutical University, 2024, 55(2): 147-157. DOI: 10.11665/j.issn.1000-5048.2024010205
    [4]WANG Chen, ZHANG Zhengping, LI Yinchun. Development strategy and clinical research progress of universal chimeric antigen receptor T-cell drugs[J]. Journal of China Pharmaceutical University, 2023, 54(2): 141-149. DOI: 10.11665/j.issn.1000-5048.20211125001
    [5]LU Zhipeng, XU Qinglong, CHEN Panpan, QIN Yajuan, TANG Lijun, LI Tingyou. Research progress of radioprobes targeting fibroblast activating protein[J]. Journal of China Pharmaceutical University, 2022, 53(6): 651-662. DOI: 10.11665/j.issn.1000-5048.20220603
    [6]YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503
    [7]WANG Chen, XU Jun, LIU Yanhua, WANG Zengtao, HU Yue, TIAN Taiping, YI Mengjuan. Research progress on functionalized graphene oxide as drug carriers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 117-124. DOI: 10.11665/j.issn.1000-5048.20170118
    [8]ZHANG Danfeng, JIAO Yu, LIU Yong, ZHANG Yanmin, ZHANG Zhimin, LU Tao. Progress of small molecule anti-tumor covalent drugs[J]. Journal of China Pharmaceutical University, 2017, 48(1): 1-7. DOI: 10.11665/j.issn.1000-5048.20170101
    [9]ZHANG Jinghui, WANG Yajing, HU Rong. Roles of Moesin in tumor progression[J]. Journal of China Pharmaceutical University, 2015, 46(3): 371-375. DOI: 10.11665/j.issn.1000-5048.20150319
    [10]Advances and Prospects of Drug Discovery and Development Zhang Yihua, Peng Sixun, Hua Weiyi[J]. Journal of China Pharmaceutical University, 1999, (2): 75-80.
  • Cited by

    Periodical cited type(10)

    1. 严欣,胡蝶,贾瑞瑞,华雅洁,岳远征,王良桂,杨秀莲. 海州常山组培再生体系的建立. 分子植物育种. 2022(04): 1297-1303 .
    2. 郝丽亚,李冰洁,王中林,郑新华. 扯根菜化学成分及其保肝活性. 中成药. 2022(09): 2848-2854 .
    3. 张宇,岑银芝,陈亮,李勇军,孙建博,李林珍. 海州常山茎的化学成分研究(Ⅱ). 中药材. 2022(04): 857-861 .
    4. 王啸洋,卫柯,陆云阳,佟菲,张艳华,汤海峰. 美花铁线莲茎乙醇提取物正丁醇萃取部位化学成分的提取和鉴定. 环球中医药. 2022(11): 1784-1790 .
    5. 李林珍,张宇,陈亮,岑银芝,涂杨丽,杨小生,李勇军. 海州常山茎正丁醇部位的化学成分及体外抗肿瘤活性研究. 中国药房. 2022(21): 2578-2583+2589 .
    6. 刘晓聪,林冬梅,刘敏,张敏,李强,王健,徐露琳,高原,杨健. 番石榴的化学成分及其抗肿瘤与抗真菌活性. 中国中药杂志. 2021(15): 3877-3885 .
    7. 陈林玉,宋乐园,王云雨,卢梦如,顿彩云,杨青华,毕跃峰. 红小米化学成分与营养成分分析. 食品科学. 2021(18): 218-224 .
    8. 张吕丽,吴云飞,李祖强,罗蕾. 柄果海桐化学成分研究(Ⅲ). 云南师范大学学报(自然科学版). 2020(02): 55-58 .
    9. 吴威,宋芷琪,田琨宇,张会永. 豨桐丸的本草考证及组方药物化学成分和药理作用研究进展. 中草药. 2020(17): 4586-4597 .
    10. 刘璐,张宇,魏茜,李勇军,杨小生,李林珍. 臭梧桐子化学成分研究. 中药材. 2020(07): 1622-1625 .

    Other cited types(8)

Catalog

    Article views (857) PDF downloads (1149) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return