• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Xiaoqing, LIANG Shuang, LIU Yongjun, ZHANG Na. Progress of research on inhibition strategy of bromodomain-containing protein 4 and its application in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(3): 270-278. DOI: 10.11665/j.issn.1000-5048.20210302
Citation: LIU Xiaoqing, LIANG Shuang, LIU Yongjun, ZHANG Na. Progress of research on inhibition strategy of bromodomain-containing protein 4 and its application in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(3): 270-278. DOI: 10.11665/j.issn.1000-5048.20210302

Progress of research on inhibition strategy of bromodomain-containing protein 4 and its application in tumor therapy

Funds: This study was supported by the National Natural Science Foundation of China (No. 81974498)
More Information
  • Received Date: May 22, 2020
  • Revised Date: February 02, 2021
  • Bromodomain-containing protein 4 (BRD4), a new target for tumor therapy, is the most important member of the bromodomain and extra-terminal family. The overexpression of BRD4 is associated with genesis and development of various cancers.Used either alone or in combination with other treatments such as chemotherapy, photothermal therapy and immunotherapy, the BRD4 inhibitors or degraders exhibited excellent antitumor effects, providing a new direction in tumor treatment. In this review, the structure and function of BRD4, the inhibition strategies of BRD4, the application in tumor combination therapy and drug resistance are introduced, which provides reference for targeting BRD4 in tumor therapy.
  • [1]
    . Epigenetics,2017,12(5):323-339.
    [2]
    Ghasemi S. Cancer''s epigenetic drugs:where are they in the cancer medicines[J]?Pharmacogenomics J,2020,20(3):367-379.
    [3]
    Liu KJ,Zhang ZM,Ran T,et al. Advances in BET bromodomain protein inhibitors[J]. J China Pharm Univ(中国药科大学学报),2015,46(3):264-271.
    [4]
    Duan YC,Guan YY,Qin WP,et al. Targeting Brd4 for cancer therapy:inhibitors and degraders[J]. Medchemcomm,2018,9(11):1779-1802.
    [5]
    Shi JW,Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition[J]. Mol Cell,2014,54(5):728-736.
    [6]
    Segura MF,Fontanals-Cirera B,Gaziel-Sovran A,et al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy[J]. Cancer Res,2013,73(20):6264-6276.
    [7]
    Goundiam O,Gestraud P,Popova T,et al. Histo-genomic stratification reveals the frequent amplification/overexpression of CCNE1 and BRD4 genes in non-BRCAness high grade ovarian carcinoma[J]. Int J Cancer,2015,137(8):1890-1900.
    [8]
    Ferri E,Petosa C,McKenna CE. Bromodomains:structure,function and pharmacology of inhibition[J]. Biochem Pharmacol,2016,106:1-18.
    [9]
    Filippakopoulos P,Qi J,Picaud S,et al. Selective inhibition of BET bromodomains[J]. Nature,2010,468(7327):1067-1073.
    [10]
    Filippakopoulos P,Knapp S. Targeting bromodomains:epigenetic readers of lysine acetylation[J]. Nat Rev Drug Discov,2014,13(5):337-356.
    [11]
    Stathis A,Bertoni F. BET proteins as targets for anticancer treatment[J]. Cancer Discov,2018,8(1):24-36.
    [12]
    Doroshow DB,Eder JP,LoRusso PM. BET inhibitors:a novel epigenetic approach[J]. Ann Oncol,2017,28(8):1776-1787.
    [13]
    Mochizuki K,Nishiyama A,Jang MK,et al. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase[J]. J Biol Chem,2008,283(14):9040-9048.
    [14]
    Zhu HR,Bengsch F,Svoronos N,et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression[J]. Cell Rep,2016,16(11):2829-2837.
    [15]
    Andrieu GP,Shafran JS,Smith CL,et al. BET protein targeting suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer and elicits anti-tumor immune response[J]. Cancer Lett,2019,465:45-58.
    [16]
    Donati B,Lorenzini E,Ciarrocchi A. BRD4 and cancer:going beyond transcriptional regulation[J]. Mol Cancer,2018,17(1):164.
    [17]
    Sun CY,Yin J,Fang Y,et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency[J]. Cancer Cell,2018,33(3):401-416.e8.
    [18]
    Li X,Baek G,Ramanand SG,et al. BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer[J]. Cell Rep,2018,22(3):796-808.
    [19]
    Bandaria JN,Qin PW,Berk V,et al. Shelterin protects chromosome ends by compacting telomeric chromatin[J]. Cell,2016,164(4):735-746.
    [20]
    Berenguer-Daizé C,Astorgues-Xerri L,Odore E,et al. OTX015 (MK-8628),a novel BET inhibitor,displays in vitro and in vivo antitumor effects alone and in combination with conventional therapies in glioblastoma models[J]. Int J Cancer,2016,139(9):2047-2055.
    [21]
    Berthon C,Raffoux E,Thomas X,et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia:a dose-escalation,phase 1 study[J]. Lancet Haematol,2016,3(4):e186-e195.
    [22]
    Blum KA,Abramson J,Maris M,et al. A phase I study of CPI-0610,a bromodomain and extra terminal protein (BET) inhibitor in patients with relapsed or refractory lymphoma[J]. Ann Oncol,2018,29:iii7.
    [23]
    Siu KT,Ramachandran J,Yee AJ,et al. Preclinical activity of CPI-0610,a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma[J]. Leukemia,2017,31(8):1760-1769.
    [24]
    Rhyasen GW,Hattersley MM,Yao Y,et al. AZD5153:a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies[J]. Mol Cancer Ther,2016,15(11):2563-2574.
    [25]
    Shen G,Chen JC,Zhou YQ,et al. AZD5153 inhibits prostate cancer cell growth in vitro and in vivo[J]. Cell Physiol Biochem,2018,50(2):798-809.
    [26]
    Li X,Fu Y,Yang B,et al. BRD4 inhibition by AZD5153 promotes antitumor immunity via depolarizing M2 macrophages[J]. Front Immunol,2020,11:89.
    [27]
    Maggisano V,Celano M,Malivindi R,et al. Nanoparticles loaded with the BET inhibitor JQ1 block the growth of triple negative breast cancer cells in vitro and in vivo[J]. Cancers,2019,12(1):91.
    [28]
    Hewings DS,Rooney TP,Jennings LE,et al. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions[J]. J Med Chem,2012,55(22):9393-9413.
    [29]
    Gosmini R,Nguyen VL,Toum J,et al. The discovery of I-BET726 (GSK1324726A),a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor[J]. J Med Chem,2014,57(19):8111-8131.
    [30]
    Tanaka M,Roberts JM,Seo HS,et al. Design and characterization of bivalent BET inhibitors[J]. Nat Chem Biol,2016,12(12):1089-1096.
    [31]
    Xue G,Wang K,Zhou DL,et al. Light-induced protein degradation with photocaged PROTACs[J]. J Am Chem Soc,2019,141(46):18370-18374.
    [32]
    Winter GE,Buckley DL,Paulk J,et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation[J]. Science,2015,348(6241):1376-1381.
    [33]
    Lu J,Qian Y,Altieri M,et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4[J]. Chem Biol,2015,22(6):755-763.
    [34]
    He L,Chen C,Gao GY,et al. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma[J]. Aging,2020,12(5):4547-4557.
    [35]
    Liu J,Chen H,Ma LN,et al. Light-induced control of protein destruction by opto-PROTAC[J]. Sci Adv,2020,6(8):eaay5154.
    [36]
    Raina K,Lu J,Qian YM,et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer[J]. Proc Natl Acad Sci U S A,2016,113(26):7124-7129.
    [37]
    Sun B,Fiskus W,Qian Y,et al. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells[J]. Leukemia,2018,32(2):343-352.
    [38]
    Lam FC,Morton SW,Wyckoff J,et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles[J]. Nat Commun,2018,9(1):1991.
    [39]
    Xie F,Huang M,Lin X,et al. The BET inhibitor I-BET762 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine[J]. Sci Rep,2018,8(1):8102.
    [40]
    Wang H,Tang Y,Fang Y,et al. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1[J]. Nano Lett,2019,19(5):2935-2944.
    [41]
    Wang TT,Wang DG,Yu HJ,et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors[J]. Nat Commun,2018,9(1):1532.
    [42]
    Tian Y,Wang XF,Zhao S,et al. JQ1-loaded polydopamine nanoplatform inhibits c-MYC/programmed cell death ligand 1 to enhance photothermal therapy for triple-negative breast cancer[J]. ACS Appl Mater Interfaces,2019,11(50):46626-46636.
    [43]
    Mao W,Ghasemzadeh A,Freeman ZT,et al. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition[J]. J Immunother Cancer,2019,7(1):277.
    [44]
    Hogg SJ,Vervoort SJ,Deswal S,et al. BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1[J]. Cell Rep,2017,18(9):2162-2174.
    [45]
    Fehling SC,Miller AL,Garcia PL,et al. The combination of BET and PARP inhibitors is synergistic in models of cholangiocarcinoma[J]. Cancer Lett,2020,468:48-58.
    [46]
    Muralidharan SV,Bhadury J,Nilsson LM,et al. BET bromodomain inhibitors synergize with ATR inhibitors to induce DNA damage,apoptosis,senescence-associated secretory pathway and ER stress in Myc-induced lymphoma cells[J]. Oncogene,2016,35(36):4689-4697.
    [47]
    Bolin S,Borgenvik A,Persson CU,et al. Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma[J]. Oncogene,2018,37(21):2850-2862.
    [48]
    Rathert P,Roth M,Neumann T,et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition[J]. Nature,2015,525(7570):543-547.
    [49]
    Shu SK,Lin CY,He HH,et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer[J]. Nature,2016,529(7586):413-417.
    [50]
    Jin X,Yan Y,Wang D,et al. DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4[J]. Mol Cell,2018,71(4):592-605.
    [51]
    Dai X,Gan W,Li X,et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4[J]. Nat Med,2017,23(9):1063-1071.
  • Related Articles

    [1]ZHANG Dongxue, QIAO Liang. Microfluidic chip and mass spectrometry-based detection of bacterial antimicrobial resistance and study of antimicrobial resistance mechanism[J]. Journal of China Pharmaceutical University, 2023, 54(6): 695-705. DOI: 10.11665/j.issn.1000-5048.2023060203
    [2]YANG Nan, ZHANG Xiao, LYU Hui, HUO Meirong, XU Wei. Advances in immune checkpoint inhibitors combined with other treatments[J]. Journal of China Pharmaceutical University, 2023, 54(2): 131-140. DOI: 10.11665/j.issn.1000-5048.20221028002
    [3]YANG Wanwan, YE Fangyu, WU Yujia, WANG Haochen, ZHAO Li. Research progress of PARP inhibitors in cancers and their drug resistance[J]. Journal of China Pharmaceutical University, 2022, 53(5): 525-534. DOI: 10.11665/j.issn.1000-5048.20220503
    [4]SHI Jinyu, BAI Ying, PENG Kewen, ZHANG Wenhui, ZHU Qihua, XU Yungen. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. Journal of China Pharmaceutical University, 2019, 50(5): 523-530. DOI: 10.11665/j.issn.1000-5048.20190503
    [5]GUO Leilei, XU Yurui, ZHANG Lei, DONG Yiwen, LIN Shuting, NING Xinghai, LIU Xiaoxuan. Advances in the application of three-dimensional tumor spheroids model in the mechanism study of drug resistance[J]. Journal of China Pharmaceutical University, 2018, 49(5): 521-527. DOI: 10.11665/j.issn.1000-5048.20180502
    [6]JIA Chengshu, WANG Junwei, LI Hui, ZHU Qihua, GE Yiran, XU Yungen. Advances of phosphoinositide-3 kinase inhibitors in combination with other drugs to overcome drug resistance[J]. Journal of China Pharmaceutical University, 2017, 48(5): 523-528. DOI: 10.11665/j.issn.1000-5048.20170503
    [7]LI Bing, LI Bo, ZHOU Changlin. Progress on antimicrobial peptides against drug-resistant bacterial infection[J]. Journal of China Pharmaceutical University, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514
    [8]MIAO You-pan, LI Ai-xiu, LIU Tao, WU Ke-zhu. Molecular designing strategies of anti-drug-resistant HIV-1 protease inhibitors[J]. Journal of China Pharmaceutical University, 2009, 40(3): 279-283.
    [9]Action of Cell-Bound Penicillinase in Mediating Resistance of Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 1991, (6): 363-366.
    [10]Chen Huibo, Chen Zhiben. STUDIES ON THE PENICILLINASE FROM ANTIBIOTIC-RESISTANT S.AUREUS[J]. Journal of China Pharmaceutical University, 1982, (2): 23-28.
  • Cited by

    Periodical cited type(4)

    1. 刘亚平,程平,张淑平. 喹啉酮类BRD4抑制剂的3D-QSAR研究. 广州化学. 2024(01): 56-61 .
    2. 李振江,孙德超,孔晨旭,耿亚东,徐晨阳,丁炳谦. 白藜芦醇通过BRD4调控Wnt/β-catenin通路逆转胶质瘤细胞替莫唑胺耐药的机制研究. 天津医药. 2022(10): 1043-1050 .
    3. 郭晓波,赵宇峰,赵波,李岗. BRD4抑制剂JQ1及miR-141对膀胱癌细胞增殖和凋亡的影响及其机制. 中国老年学杂志. 2022(22): 5621-5625 .
    4. 雷蕾,聂玉鹏,褚昊月,刘焕燕. JQ1联合siPD-L1对口腔鳞状细胞癌细胞增殖和凋亡的影响. 中国医师杂志. 2022(11): 1674-1678 .

    Other cited types(2)

Catalog

    Article views (366) PDF downloads (1081) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return