• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SHA Kang, LI Jiachen, QI Xiaole. Application and research progress of in situ gel for local treatment of periodontitis[J]. Journal of China Pharmaceutical University, 2022, 53(3): 365-375. DOI: 10.11665/j.issn.1000-5048.20220315
Citation: SHA Kang, LI Jiachen, QI Xiaole. Application and research progress of in situ gel for local treatment of periodontitis[J]. Journal of China Pharmaceutical University, 2022, 53(3): 365-375. DOI: 10.11665/j.issn.1000-5048.20220315

Application and research progress of in situ gel for local treatment of periodontitis

More Information
  • Received Date: January 05, 2022
  • Revised Date: April 06, 2022
  • Recently, in situ gel has been widely used as a local delivery system for periodontitis treatment because of its lesion injectability, local drug depot function, and drug sustained-release effect.Different therapeutic purposes can be achieved by loading different types of drugs such as antibiotics, bioactive factors, etc.In this review, different types of in situ gel with temperature-sensitive, ion-sensitive, pH-sensitive and solvent-exchanged characteristics were introduced for their applications and limitations in the delivery of drug for periodontitis;and the elimination of periodontal inflammation, periodontal tissue repair and the long-term role after loading microsphere achieved by the in situ gel system were also reviewed.
  • [1]
    . Periodontol 2000,2020,82(1):257-267.
    [2]
    Kü?üktürkmen B,?z UC,Topta? M,et al. Development of zoledronic acid containing biomaterials for enhanced guided bone regeneration[J]. J Pharm Sci,2021,110(9):3200-3207.
    [3]
    Zeng J,Mamitimin M,Song Y,et al. Chairside administrated antibacterial hydrogels containing berberine as dental temporary stopping for alveolar ridge preservation[J]. Eur Polym J,2021,160:110808.
    [4]
    Chowhan A,Giri TK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route[J]. Int J Biol Macromol,2020,150:559-572.
    [5]
    Ranch KM,Maulvi FA,Koli AR,et al. Tailored doxycycline hyclate loaded in situ gel for the treatment of periodontitis:optimization,in vitro characterization,and antimicrobial studies[J]. AAPS PharmSciTech,2021,22(3):77.
    [6]
    Taymouri S,Shahnamnia S,Mesripour A,et al. In vitro and in vivo evaluation of an ionic sensitive in situ gel containing nanotransfersomes for aripiprazole nasal delivery[J]. Pharm Dev Technol,2021,26(8):867-879.
    [7]
    Kouchak M,Mahmoodzadeh M,Farrahi F. Designing of a pH-triggered carbopol?/HPMC in situ gel for ocular delivery of dorzolamide HCl:in vitroin vivo,and ex vivo evaluation[J]. AAPS PharmSciTech,2019,20(5):210.
    [8]
    Augustine R,Hasan A,Dalvi YB,et al. Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing[J]. Mater Sci Eng C Mater Biol Appl,2021,118:111519.
    [9]
    Huang J,Wang ZR,Krishna S,et al. Environment-sensitive hydrogels as potential drug delivery systems for the treatment of periodontitis[J]. Mat Express,2020,10(7):975-985.
    [10]
    Okur Nü,Ya?c?lar AP,Siafaka PI. Promising polymeric drug carriers for local delivery:the case of in situ gels[J]. Curr Drug Deliv,2020,17(8):675-693.
    [11]
    Nasra MMA,Khiri HM,Hazzah HA,et al. Formulation,in-vitro characterization and clinical evaluation of curcumin in situ gel for treatment of periodontitis[J]. Drug Deliv,2017,24(1):133-142.
    [12]
    Kanwar N,Sinha VR. In situ forming depot as sustained-release drug delivery systems[J]. Crit Rev Ther Drug Carrier Syst,2019,36(2):93-136.
    [13]
    Wang XQ,Ma JL,Zhu XM,et al. Minocycline-loaded in situ hydrogel for periodontitis treatment[J]. Curr Drug Deliv,2018,15(5):664-671.
    [14]
    Juvekar S,Kathpalia H. Solvent removal precipitation based in situ forming implant for controlled drug delivery in periodontitis[J]. J Control Release,2017,251:75-81.
    [15]
    Sah AK,Dewangan M,Suresh PK. Potential of chitosan-based carrier for periodontal drug delivery[J]. Colloids Surf B Biointerfaces,2019,178:185-198.
    [16]
    Guo JP,Li O,Fu XD. In vitro characteristics and pharmacodynamics evaluation on rats with periodontitis of doxycycline hydrochloride microspheres/temperature-sensitive gel[J]. J Clin Stomatol(临床口腔医学杂志),2016,32(12):714-717.
    [17]
    Boonlai W,Tantishaiyakul V,Hirun N,et al. Thermosensitive poloxamer 407/poly(acrylic acid) hydrogels with potential application as injectable drug delivery system[J]. AAPS Pharmscitech,2018,19(5):2103-2117.
    [18]
    Rangabhatla ASL,Tantishaiyakul V,Boonrat O,et al. Novel in situ mucoadhesive gels based on Pluronic F127 and xyloglucan containing metronidazole for treatment of periodontal disease[J]. Iran Polym J,2017,26(11):851-859.
    [19]
    Liu T,Chu B. Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution:FCC to BCC phase transition[J]. J Appl Crystallogr,2000,33(3):727-730.
    [20]
    Rattanasuwan K,Rassameemasmaung S,Sangalungkarn V,et al. Clinical effect of locally delivered gel containing green tea extract as an adjunct to non-surgical periodontal treatment[J]. Odontology,2016,104(1):89-97.
    [21]
    Ranch KM,Maulvi FA,Naik MJ,et al. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design:in vitroex vivoin vivo and human studies[J]. Int J Pharm,2019,554:264-275.
    [22]
    Vanderstraeten M,Gutermuth J,Grosber M. Contact anaphylaxis to poloxamer 188 and 407 in a periodontal gel[J]. Contact Dermatitis,2021,85(2) :253 - 255.
    [23]
    Liu SY,Wang YN,Ma BJ,et al. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration[J]. ACS Appl Mater Interfaces,2021,13(31):36880-36893.
    [24]
    Xu X,Liu H,Guo JM,et al. Intragastric amorphous calcium carbonate consumption triggered generation of in situ hydrogel piece for sustained drug release[J]. Int J Pharm,2020,590:119880.
    [25]
    Obaidat AA,Altamimi RM,Hammad MM. Formulation and release of doxycycline HCL from an ion activated in situ gelling delivery system for the treatment of periodontal disease[J]. J Appl Polym Sci,2010,115(2):811-816.
    [26]
    Swain GP,Patel S,Gandhi J,et al. Development of moxifloxacin hydrochloride loaded in situ gel for the treatment of periodontitis:in-vitro drug release study and antibacterial activity[J]. J Oral Biol Craniofac Res,2019,9(3):190-200.
    [27]
    Ni XM,Guo Q,Zou YQ,et al. Preparation and characterization of bear bile-loaded pH sensitive in situ gel eye drops for ocular drug delivery[J]. Iran J Basic Med Sci,2020,23(7):922-929.
    [28]
    Nimmo CM,Owen SC,Shoichet MS. Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering[J]. Biomacromolecules,2011,12(3):824-830.
    [29]
    Park SH,Seo JY,Park JY,et al. An injectable,click-crosslinked,cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering[J]. NPG Asia Mater,2019,11:30.
    [30]
    Wang XY,Burgess DJ. Drug release from in situ forming implants and advances in release testing[J]. Adv Drug Deliv Rev,2021,178:113912.
    [31]
    Suh MS,Kastellorizios M,Tipnis N,et al. Effect of implant formation on drug release kinetics of in situ forming implants[J]. Int J Pharm,2021,592:120105.
    [32]
    Chantadee T,Santimaleeworagun W,Phorom Y,et al. Vancomycin HCl-loaded lauric acid in situ-forming gel with phase inversion for periodontitis treatment[J]. J Drug Deliv Sci Technol,2020,57:101615.
    [33]
    Li ZX,Mu HL,Weng Larsen S,et al. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants[J]. Int J Pharm,2021,609:121183.
    [34]
    Qin YY,Yuan ML,Li L,et al. Formulation and evaluation of in situ forming PLA implant containing tinidazole for the treatment of periodontitis[J]. J Biomed Mater Res B Appl Biomater,2012,100(8):2197-2202.
    [35]
    Lwin WW,Puyathorn N,Senarat S,et al. Emerging role of polyethylene glycol on doxycycline hyclate-incorporated Eudragit RS in situ forming gel for periodontitis treatment[J]. J Pharm Investig,2020,50(1):81-94.
    [36]
    Phaechamud T,Setthajindalert O. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery[J]. Eur J Pharm Sci,2017,99:258-265.
    [37]
    Rein SMT,Lwin WW,Tuntarawongsa S,et al. Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery[J]. Mater Sci Eng C Mater Biol Appl,2020,117:111275.
    [38]
    Mei LL,Huang XT,Xie YC,et al. An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis[J]. Drug Deliv,2017,24(1):1148-1158.
    [39]
    Fonseca-Santos B,Bonifácio BV,Baub TM,et al. In-situ gelling liquid crystal mucoadhesive vehicle for curcumin buccal administration and its potential application in the treatment of oral candidiasis[J]. J Biomed Nanotechnol,2019,15(6):1334-1344.
    [40]
    Liu JY,Xiao Y,Wang XY,et al. Glucose-sensitive delivery of metronidazole by using a photo-crosslinked chitosan hydrogel film to inhibit Porphyromonas gingivalis proliferation[J]. Int J Biol Macromol,2019,122:19-28.
    [41]
    Chichiricco PM,Riva R,Thomassin JM,et al. In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration[J]. Dent Mater,2018,34(12):1769-1782.
    [42]
    Cobb CM,Sottosanti JS. A re-evaluation of scaling and root planing[J]. J Periodontol,2021,92(10):1370-1378.
    [43]
    McKenna AM,Ioannidou E,Banach DB. Antibiotic prescribing at a periodontal residency practice in Connecticut[J]. J Periodontol,2021,92(8):e76-e83.
    [44]
    Raval M,Bagada H. Formulation and evaluation of cyclodextrin-based thermosensitive in situ gel of azithromycin for periodontal delivery[J]. J Pharm Innov,2021,16(1):67-84.
    [45]
    Agossa K,Sy K,Mainville T,et al. Antibiotic use in periodontal therapy among French dentists and factors which influence prescribing practices[J]. Antibiotics (Basel),2021,10(3):303.
    [46]
    Xu XW,Gu ZY,Chen X,et al. An injectable and thermosensitive hydrogel:promoting periodontal regeneration by controlled-release of aspirin and erythropoietin[J]. Acta Biomater,2019,86:235-246.
    [47]
    Bansal M,Mittal N,Yadav SK,et al. Periodontal thermoresponsive,mucoadhesive dual antimicrobial loaded in situ gel for the treatment of periodontal disease:preparation,in-vitro characterization and antimicrobial study[J]. J Oral Biol Craniofac Res,2018,8(2):126-133.
    [48]
    Abdelaziz D,Hefnawy A,Al-Wakeel E,et al. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity[J]. J Adv Res,2020,28:51-62.
    [49]
    Xu C,Lei C,Meng LY,et al. Chitosan as a barrier membrane material in periodontal tissue regeneration[J]. J Biomed Mater Res B Appl Biomater,2012,100(5):1435-1443.
    [50]
    Pan J,Deng JJ,Yu LM,et al. Investigating the repair of alveolar bone defects by gelatin methacrylate hydrogels-encapsulated human periodontal ligament stem cells[J]. J Mater Sci Mater Med,2019,31(1):3.
    [51]
    Barros J,Ferraz MP,Azeredo J,et al. Alginate-nanohydroxyapatite hydrogel system:Optimizing the formulation for enhanced bone regeneration[J]. Mater Sci Eng C Mater Biol Appl,2019,105:109985.
    [52]
    Woo HN,Cho YJ,Tarafder S,et al. The recent advances in scaffolds for integrated periodontal regeneration[J]. Bioact Mater,2021,6(10):3328-3342.
    [53]
    Zhang L,Dong YS,Zhang N,et al. Potentials of sandwich-like chitosan/polycaprolactone/gelatin scaffolds for guided tissue regeneration membrane[J]. Mater Sci Eng C Mater Biol Appl,2020,109:110618.
    [54]
    Liao F,Chen YY,Li ZB,et al. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering[J]. J Mater Sci Mater Med,2010,21(2):489-496.
    [55]
    Rather HA,Jhala D,Vasita R. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering[J]. Mater Sci Eng C,2019,103:109761.
    [56]
    Curvello R,Raghuwanshi VS,Garnier G. Engineering nanocellulose hydrogels for biomedical applications[J]. Adv Colloid Interface Sci,2019,267:47-61.
    [57]
    Ibrahim M,Labaki M,Giraudon JM,et al. Hydroxyapatite,a multifunctional material for air,water and soil pollution control:a review[J]. J Hazard Mater,2020,383:121139.
    [58]
    Guan X,Wu QP,Zhang XW,et al. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries[J]. Chem Eng J,2020,382:122935.
    [59]
    Pan YS,Zhao Y,Kuang R,et al. Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111158.
    [60]
    de Witte TM,Fratila-Apachitei LE,Zadpoor AA,et al. Bone tissue engineering via growth factor delivery:from scaffolds to complex matrices[J]. Regen Biomater,2018,5(4):197-211.
    [61]
    Garg T,Singh O,Arora S,et al. Scaffold:a novel carrier for cell and drug delivery[J]. Crit Rev Ther Drug Carrier Syst,2012,29(1):1-63.
    [62]
    Peyvandi AA,Roozbahany NA,Peyvandi H,et al. Critical role of SDF-1/CXCR4 signaling pathway in stem cell homing in the deafened rat cochlea after acoustic trauma[J]. Neural Regen Res,2018,13(1):154-160.
    [63]
    Fatica A,Bozzoni I. Long non-coding RNAs:new players in cell differentiation and development[J]. Nat Rev Genet,2014,15(1):7-21.
    [64]
    Chenite A,Chaput C,Wang D,et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J]. Biomaterials,2000,21(21):2155-2161.
    [65]
    Ding T,Kang WY,Li JH,et al. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration[J]. J Nanobiotechnology,2021,19(1):247.
    [66]
    He XT,Li X,Xia Y,et al. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration:experimental studies in vitro and in rats[J]. Acta Biomater,2019,88:162-180.
    [67]
    Shen XF,Zhang YX,Gu Y,et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration[J]. Biomaterials,2016,106:205-216.
    [68]
    Tan JL,Zhang M,Hai ZJ,et al. Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration[J]. ACS Nano,2019,13(5):5616-5622.
    [69]
    Jo BS,Lee Y,Suh JS,et al. A novel calcium-accumulating peptide/gelatin in situ forming hydrogel for enhanced bone regeneration[J]. J Biomed Mater Res A,2018,106(2):531-542.
    [70]
    Shafiee A,Kehtari M,Zarei Z,et al. An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation[J]. Mater Sci Eng C Mater Biol Appl,2021,120:111739.
    [71]
    Zhang M,Bai Y,Xu C,et al. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats[J]. Drug Deliv,2021,28(1):2548-2561.
    [72]
    Zhang WJ,Xu WG,Ning C,et al. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia[J]. Biomaterials,2018,181:378-391.
    [73]
    Liu LL,Cui WG. Injectable hydrogel loaded with bone morphogenetic protein-2 microspheres for bacteriostasis and osteogenesis[J]. J Shanghai Jiaotong Univ (Med Sci) (上海交通大学学报 医学版),2020,40 (9) :1185 - 1192.
    [74]
    Li XW,Liu XH,Ni SL,et al. Enhanced osteogenic healing process of rat tooth sockets using a novel simvastatin-loaded injectable microsphere-hydrogel system[J]. J Craniomaxillofac Surg,2019,47(7):1147-1154.
    [75]
    Seo JH,Lee SY,Kim S,et al. Monopotassium phosphate-reinforced in situ forming injectable hyaluronic acid hydrogels for subcutaneous injection[J]. Int J Biol Macromol,2020,163:2134-2144.
  • Related Articles

    [1]WANG Yan, PING Fengfeng, ZHOU Danli, CHEN Yanhua, LING Jingjing. Masitinib alleviated cerebral ischemia/reperfusion injury by inhibiting autophagy and apoptosis[J]. Journal of China Pharmaceutical University, 2021, 52(2): 227-235. DOI: 10.11665/j.issn.1000-5048.20210212
    [2]LIU Li, ZHANG Qianwen, NONG Cheng, ZHANG Xi, XU Xiaoting, Mohammed Ismail, XIAO Li, JIANG Zhenzhou, ZHANG Luyong, SUN Lixin. Research progress of lncRNA regulating signal transduction pathway in liver diseases[J]. Journal of China Pharmaceutical University, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304
    [3]YANG Rui, ZHU Yi, WANG Yin, MA Wenqi, WANG Xin, HAN Xiqiong, LIU Naifeng. Recent progress in autophagy and vascular calcification[J]. Journal of China Pharmaceutical University, 2018, 49(4): 401-406. DOI: 10.11665/j.issn.1000-5048.20180403
    [4]TAN Chengning, HUANG Jinghan, LI Chunhong, XIA Zhining, YANG Fengqing. Applications of proteomics in the study of cell signal pathways[J]. Journal of China Pharmaceutical University, 2017, 48(4): 384-395. DOI: 10.11665/j.issn.1000-5048.20170402
    [5]LIU Jing, HUANG Yanwei, ZHOU Bo, SONG Qingqing. Effect of R-(+)-lipoic acid on growth, proliferation and related mechanism in human HepG2 cells[J]. Journal of China Pharmaceutical University, 2017, 48(3): 348-354. DOI: 10.11665/j.issn.1000-5048.20170316
    [6]WANG Xue, ZHANG Pinghu. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. Journal of China Pharmaceutical University, 2017, 48(1): 110-116. DOI: 10.11665/j.issn.1000-5048.20170117
    [7]MEI Huifang, SUN Lixin, JIANG Zhenzhou, ZHANG Luyong. Sphingosine 1-phosphate signaling pathway:a novel target for regulation of epithelial and endothelial barrier function[J]. Journal of China Pharmaceutical University, 2016, 47(6): 654-660. DOI: 10.11665/j.issn.1000-5048.20160604
    [8]SUN Hao, YANG Jiapei, MAO Yong, WANG Dandan, YU Feng. Involvement of Fas-dependent pathway in rhein-induced apoptosis of HK-2 cells[J]. Journal of China Pharmaceutical University, 2015, 46(4): 469-475. DOI: 10.11665/j.issn.1000-5048.20150414
    [9]LIU Zhi-yong, NIU Zhi-yuan, ZHENG Wei, SHEN Ping-ping. Effects of p-ERK1/2 on nitric oxide donor induced apoptosis of HepG2 cells[J]. Journal of China Pharmaceutical University, 2012, 43(6): 530-534.
    [10]Study on the Relationship of Dexamethasone-induced Mouse Thymocytes Apoptosis Process with ERK1/2 MAPK Pathway and Calcium Ion Concentration[J]. Journal of China Pharmaceutical University, 2004, (1): 79-83.

Catalog

    Article views (214) PDF downloads (576) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return